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ABSTRACT Speaker diarization refers to methods for identifying speakers from audio recordings. An 
important application comes from the need to assess student interactions in collaborative learning 
environments. Diarization is very difficult in these environments where a single microphone is used to record 
multiple voices. Although there have been advancements in this field, little progress has been made in the 
case of noisy and disorganized multi-speaker environments. Current state-of-the-art methods based on Deep 
Learning require large training databases and can suffer from significant noise interference and bias due to 
the speaker’s accent, age, and gender. In this paper, we are proposing a new method to identify speakers that 
does not require the use of large training sets. To this end, we use a virtual array of microphones. The signal 
at the virtual microphones is simulated by extracting the spatial information of the speakers from a single 
channel audio recording using approximate speaker geometry observed from a video recording. The Room 
Impulse Responses (RIRs) at the virtual microphones are then estimated using acoustic scene simulations. 
The RIRs are then used to compute a cross-correlation matrix of possible audio sources. Speaker diarization 
is performed using the cross-correlation matrices as input to a classifier. For the task of identifying active 
student speakers in classroom audio, the proposed method significantly outperformed diarization methods 
performed by Google Cloud and Amazon AWS services.  

INDEX TERMS Speaker Identification, Speaker Diarization, Audio Room Simulation, Virtual Microphone 
Arrays. 

I. INTRODUCTION 
Speaker identification in crowded rooms remains very 
challenging. Crosstalk and large amounts of background noise 
make speaker separation particularly challenging. The 
significant variations associated with picking up speakers in 
crowded rooms makes it very difficult to develop ground 
truths on large datasets. As a result, the use of Deep Learning 
methods is fundamentally limited on pre-training datasets that 
may not be representative of the complexities associated with 
training for crowded rooms. 

For a single speaker in a non-crowded room, a typical 
speaker identification system involves the extraction of speech 
features such as formant frequencies, pitch contours, and 
coarticulation from the test samples and classification against 
a database of training samples [1]. The datasets still need to 

contain as many training examples as possible and should be 
updated periodically to maintain a proper performance level 
[2]. The accuracy of the identification depends on the size of 
the dataset; the bigger the dataset, the better the accuracy, but 
the longer the training times [3].  

In addition to long training times, datasets are also prone to 
bias with respect to spoken language and accent. [4] This 
biasing is usually unintentional and unconscious, and it is the 
product of the environment where the speech recognition 
system is developed [5]. 

The limitations of speech processing systems are more 
evident in challenging situations such as classroom 
environments. In this paper, we restrict our attention to speaker 
diarization in collaborative learning environments where a 
small group of 2 to 5 students sits around a   table (see Fig. 1).  
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In this case, there is strong background interference coming 
from having up to 5 collaborative groups with over 20 
students total, 5 facilitators, 2 teachers, and 5 researchers in 
the same room. The speakers can take turns to speak, but it 
is not unusual to have crosstalk, where two or more speakers 
talk at the same time. 

A fundamental problem in educational research is to 
understand how the classroom material engages the 
students. To understand how students interact, classroom 
sessions are recorded and transcribed. An important 
problem here is to determine which participant is speaking 
at a particular moment, what she or he has said, and for how 
long the participant spoke. Manual diarization of meetings 
is a tedious and time-consuming task, subject in many cases 
to the interpretation of the transcriber. Automated methods 
usually require multi-channel audio recordings and are 
prone to errors due to noise and crosstalk. Also, these 
systems have limitations in the number of speakers they can 
process, as well as the length of the audio segments.  

While diarization systems do not require enrollment of 
the speakers, they can only generate abstract labels of a 
speaker that is active in an audio segment. On the other hand, 
speaker identification systems can provide non-abstract 
labels by enrolling the participating speakers. The 
enrollment process consists of each speaker providing 
several seconds of noise-free speech without crosstalk. This 
requirement cannot be met when the data consists of audio 
recordings of busy meetings with noisy backgrounds. It is 
thus important to develop speech identification and 
diarization methods that do not impose any requirement to 
pre-enroll the speakers.   

We present a method for speaker identification and 
diarization using virtual microphones that does not require 
prior speaker enrollment. The proposed approach only 
requires a rough estimate of the speaker geometry that can 
be derived from video recordings. The approach does not 
require pre-training, is independent of the spoken language 
or accent of the participants and works well in noisy 
environments.  

The proposed approach relies on the fact that discriminant 
information about the 3D geometry of each speaker is 

embedded in the recorded audio from a single microphone. 
The basic idea is to recognize speakers using acoustical 
simulation. As part of the simulation process, the proposed 
method computes the Room Impulse Response (RIR) for 
each of the microphones and the speakers and simulates the 
reception on each of the virtual microphones. The accuracy 
of the process of computing RIRs is verified through real-
life measurements of the correlation patterns. Based on the 
simulated reception over the virtual microphones, the 
method computes correlation patterns among the virtual 
microphones. The recorded audio is then also used to 
generate different correlation patterns based on 
hypothesized speaker locations. A classifier is applied to the 
generated correlation patterns to select the most likely 
speaker location. 

For our approach, we do not consider diarization for 
multiple speakers within the same group. Our approach 
however, accounts for significant crosstalk that is the result 
of strong background interference across groups. Thus, it is 
possible to address this issue by simply adding an extra 
microphone for each subgroup of students talking, and then 
considering the two (or more) subgroups as separate groups. 
Without an extra microphone, our approach can be adapted 
for having multiple people speaking simultaneously to the 
same microphone, as described in our methods section. 

This paper is structured as follows: Section II provides 
background information. Section III describes the proposed 
method. Section IV describes the implementation of the 
method, physical validation, and provides experimental 
results of the proposed method against current state-of-the-
art methods. Section V provides concluding remarks. 

 
II. BACKGROUND  
Speaker diarization can be summarized as “who said what, 
and when”, and for “how long” [6]. The task of 
determining for how long one speaker has been active in a 
multi-participant conversation requires speaker diarization 
and subsequent identification with non-abstract labels. 
Most speaker diarization systems work by segmenting the 
audio using a voice activity detector (VAD), then the 
segments considered to be only noise are discarded, while 
those containing speech are analyzed for distinctive 
features. The different segments are classified with 
abstract labeling (e.g., speaker 10, speaker 1, etc.), usually 
by using cluster classification. Speaker identification 
systems work by enrolling speakers in a database, then 
extracting speech features to determine if the audio 
segment contains one of the enrolled speakers. A system 
that accepts or rejects the identity claim by a speaker is 
called a speaker verification system. In what follows, we 
present a summary of current state-of-the-art speaker 
diarization methods. We begin by describing classical 
speaker diarization of single-channel recordings and 
continue with speaker diarization using virtual microphone 
augmentation. We conclude the section with a discussion 

Figure 1: Example of an educational collaborative environment 
with five speakers in a noisy environment. 
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of commercial state-of-the-art methods based on Deep 
Learning. 

Hu et al. [7] proposed a method to utilize the reverberant 
information, known as the Direct-to-Reverberant Ratio 
(DRR), from a single channel recording for speaker 
diarization. Hu et al. estimate the DRR using the algorithm 
from Peso Parada et al. [8] and combine it with a Mel-
Frequency Cepstral Coefficient (MFCC) Diarization 
method proposed by Vijayasenan et al. [9]. The method 
uses both MFCC and DRR features in combination so a 
trained system can perform a clustering type of 
classification. The estimates for the DRRs are computed 
using features such as Signal-to-Noise ratios, MFCCs, 
power spectrum, and zero-crossing rates, among others. It 
is important to note that this work was tested only using 
simulated meeting recordings with clean audio and 
assumes that the speakers are stationary (they do not 
change positions). 

Yoshioka et al. [10] described a way of linking several 
recording devices, such as laptops or mobile phones, to 
emulate a microphone array. After linking the different 
devices, the multi-channel audio can be used for speaker 
diarization. Yoshioka et al. claim a 13.6% diarization rate 
when 10% of the speech duration contains more than one 
speaker. This approach is innovative but requires the 
presence of several recording devices in the meeting room, 
and therefore it is not achievable with a single microphone 
recording as in our proposed method.  

Another approach to virtual microphone emulation was 
presented by Katahira et al. [11], Del Galdo et al. [12], and 
Izquierdo et al. [13]. The authors proposed to simulate 
arrays of microphones by synthesizing virtual microphone 
signals using two physical microphones. These methods of 
microphone emulation are not viable when there is only 
one physical microphone available. 

The most recent single-channel methods for speaker 
identification and diarization are based on Machine 
Learning.  Deep Belief Networks (DBN) are widely used 
in speech recognition [14, 15]. In [16], the authors claimed 
the use of X-vectors can achieve state-of-the-art results in 
speaker recognition. In [17], the authors showed that Deep 
Neural Networks using X-vectors often outperformed 
classic i-vector methods in terms of Equal Error Rate 
(EER) on standard datasets (e.g., VoxCeleb, NIST SRE 
2016, and SWBD). To achieve this increase in 
performance, X-vector DNNs require the data to be 
augmented by adding noise and reverberation to the 
training data. This extra step is not necessary for our 
proposed method, where the only training needed consists 
of just a few seconds of audio from each of the speakers. 

Pawel Cyrta et al. [18] presented a speaker diarization 
method using a deep learning architecture that builds the 
speakers embeddings by training a recurrent convolutional 
neural network applied directly on magnitude 
spectrograms. The authors evaluated their method using 
several available datasets consisting of meetings and 
broadcast materials from news stations, claiming a 

reduction of the diarization rate error of 30% when 
compared with the baseline, the LIUMJ Speaker 
Diarization system. Compared to our proposed approach, 
this method was tested using clean datasets with very low 
levels of noise as compared to noisy recordings of 
classroom environments. The method also demands large 
datasets for training the deep learning system.  

IBM, Google, Amazon, and Microsoft offer speech 
processing services based on algorithms that use Deep 
Learning methods. These tech giants offer powerful 
computer systems and large databases for these services. 
Amazon’s, Google’s, and Microsoft’s are all closed-source 
cloud services that provide an API for speech-to-text 
processing and speaker diarization. In this paper, we 
reviewed Amazon’s Transcribe (AWS) [19], Google’s 
Cloud [20], and Microsoft Azure Speech Services [21], 
and experimentally compared Amazon’s and Google’s 
against our proposed system. 

Amazon’s Transcribe accepts either audio files or 
streaming data, single-channel, and outputs text files with 
speaker diarization based on a specified number of 
speakers. Amazons Transcribe works better with 2-5 
speakers, and it is language dependent. The length of the 
audio files is limited to a maximum of 120 minutes. 
Amazon’s Transcribe stores the voice data to train the 
models [22], unless the users select the option to delete this 
data. Amazon’s functionality can be accessed via REST 
and SOAP protocol over HTTP [23]. Amazon offers a 
highly trained set of models called Amazon Transcribe 
Medical which is aimed at medical transcriptions. Users 
can also customize the vocabulary to better fit their needs, 
which is a very desirable feature not offered by Google.  

Google’s Cloud works similarly, with an interface for 
long speech and single-channel input for transcription 
purposes [22]. The optimum number of speakers is set at a 
maximum of 5. As with Amazon Transcribe, Google offers 
the option of privacy that prevents data logging that could 
be used to improve the models. Google’s models are 
optimized for phone conversations or videos, accepting 
16kHz or 8kHz audio, respectively, depending on the 
application [23]. It also offers vocabulary customization. 
Google offers good scalability, infrastructure, and payment 
schemes that are considered the best among the technology 
giants [24].  

 Microsoft offers speaker diarization via its Cognitive 
Services. Microsoft’s Diarization system ranked first at the 
VoxSRC challenge 2020 by achieving a diarization error 
(DER) of 3.71% in development and 6.23% in evaluation 
testing [25]. The datasets consisted of audio collected from 
YouTube recordings. For the challenge, the network was 
trained with 1500 hours of simulated mixed training audio. 
Microsoft Speaker Recognition [21] offers text-
independent speaker recognition/verification. The 
speakers need to be enrolled to create a signature, which is 
later compared with the audio to be analyzed. The 
minimum requirements are 20 seconds of speech for 
training, and 4 seconds of speech for identification, with 
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unlimited speaker enrollment, with only one speaker 
present. In the case of diarization, Microsoft can only 
recognize up to two speakers. Microsoft Transcription 
requires multi-channel audio for diarization and the 
signature of the participating speakers for identification, 
labeling each speech segment with its correspondent 
speaker. Microsoft does not collect users’ voice samples to 
train its models. Users can customize their vocabulary and 
the environment they are expecting to operate, meaning 
that customization must include noise, indoor or outdoor 
environments, multi-gender speech, etc. [21]. 

Although the systems we described above perform well 
under the environments they were tested and designed to 
operate, they still have some limitations with respect to 
training requirements, number of identified speakers, and 
interfacing. First, these systems are paid services that 
require connectivity to the API and subsequent batch 
processing. Our proposed system is completely stand-
alone, not requiring any connection, thus allowing for 
implementation in applications where connectivity may be 
impaired. The system can run on stand-alone computers 
without the need to access remote computer clusters or 
databases. Second, we do not require speech databases; our 
system is based on physical models that are adapted to the 
scene we are analyzing. Instead of large datasets, our 
system requires capturing only about 1 to 2 seconds of 
audio from each speaker for both training and recognition. 
In contrast, at a minimum, state-of-the-art systems require 
tens of seconds of clean audio for training and several 
seconds of identification. In addition, the lack of databases 
also eliminates privacy issues, as voice logging is not 
needed to improve the models. Also, the physical model 
nature allows, at least in theory, to process an unlimited 
number of speakers, regardless of the language spoken. 
Finally, our system has been conceived to operate in noisy 
environments where microphone arrays and cross-
correlation analysis have been proven to be efficient 
methods for speaker discrimination [26,27].  

III. PROPOSED METHOD 
We present a top-down diagram of the proposed method in 
Fig. 2. Our approach relies on estimating the acoustic scene 
to determine the most likely speaker in each speech 
segment. In Fig. 2, the acoustic scene is simulated by the 
room model generator, the source estimator, and the room 
model estimator. Room model estimation is approximated 
from a video of the scene (e.g., see Fig. 1). During training, 
we compute cross-correlation patterns for each possible 
speaker. Then, during testing, we compute cross-
correlation patterns over each audio segment and compare 
them against the training patterns to determine the speaker 
that produced the closest correlation pattern. The rest of the 
current section provides detailed descriptions of each 
component used in our proposed system. Informed consent 
was obtained for all study participants. 

A. ROOM ACOUSTICS AND SIMULATION   

We begin describing our approach using a single source 
and a single microphone. We then extend our model for 
several sources and microphones and, finally, we present 
how we adapt our models to different speaker geometries. 

We begin with a simple model based on a single source 
signal 𝑠(𝑡) located in the far-field and recorded by a 
microphone as a signal 𝑥(𝑡) that is the convolution of the 
Room Impulse Response (RIR), ℎ(𝑡), and additive noise 
𝑛(𝑡) given by: 

𝑥(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡).														(1)	
The RIR depends on the locations of the sources, the 

receiving microphone, the geometry of the room, the 
absorption of the materials in the room, and the audio 
frequencies of the sources [28]. The RIR captures audio 
propagation through a direct path, early reflections, and 
late reverberations. The direct path component is the 
Euclidian distance of the source to the microphone, and it 
is a function of the Time of Arrival (TOA) or the time it 
takes for the signal to travel from the source to the 
microphone. The other two components of the RIR are 
related to the reflections of the sound waves at the walls 
and objects in the room. The early reflections usually 
arrive 5 ms after the direct path. The late reverberations 
arrive 20 or 30 ms after the early reflections begin. The 
RIR can thus be expressed as the summation of each of the 
impulse responses corresponding to the direct path and the 
reflections as given by: 

ℎ(𝑡) = ∑ ℎ!(𝑡) + 𝑤(𝑡),															(2)"
!#$ 			 	

 
 

Figure 2: Block Diagram of Proposed Method. 
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where K is the number of reflections, k is used to index 
specific reflections, and w is measurement noise. The 
acoustic reflections depend on the absorption of the 
materials of the room and the frequency components of the 
acoustic signal [28]. The reverberation signals result from 
acoustic wave reflections. The late reverberations depend 
heavily on the frequency components of the sources but, in 
the case of the early reflections, this influence is minimum 
[29]. 
 We next extend our model for the case of multiple 
sources and microphones. Suppose that we have 𝐽 possible 
sources: 𝑠$(𝑡), … , 𝑠%(𝑡) and 𝑁 possible microphone 
signals: 𝑥$(𝑡), … , 𝑥&(𝑡). Next, let ℎ',!(𝑡) denote the RIR 
that describes the propagation from the 𝑗-th source to the 
𝑘-th microphone. At the 𝑘-th microphone, we receive 
signals from all sources as expressed by: 
 

𝑥!(𝑡) =7𝑠'(𝑡) ∗ ℎ',!(𝑡) + 𝑛(𝑡),											(3)
%

'#$

 

 
where  𝑛(𝑡) represents additive white noise. 
 In our collaborative learning environment, we only 
record 𝑥$(𝑡). We thus need to use (3) to estimate the virtual 
microphone recordings: 𝑥)(𝑡), … , 𝑥&(𝑡) from 𝑥$(𝑡). To 
use (3), we need estimates for ℎ',$(𝑡) and their 
approximate inverses ℎ',$*$(𝑡). Note that the actual inverses 
may not exist [28].  
 We perform the source estimation in two steps. First, we 
estimate the sources using: 
 

𝑠'(𝑡) ≈ 𝑥$(𝑡) ∗ ℎ',$*$(𝑡).																									(4) 
 

Second, we plug in the estimated sources from (4) into (3) 
to compute 𝑥)(𝑡), … , 𝑥&(𝑡).  
 The estimation for ℎ',!(𝑡) and ℎ',$*$(𝑡) requires acoustic 
scene simulation that depends on the geometry of the 
speakers (sources) and the room where the students are 
meeting. In what follows, we provide more information on 
how to set the parameters.  
   As shown in Fig. 1, we can estimate the relative locations 
of the speakers and the recording microphone from a single 
video shot. For example, we can approximate that the table 
is about 1.5 meters long by 1 meter wide, that the speakers 
are separated about 0.7 meters from each other, and the 
speaker’s mouths are about 0.24 to 0.25 m from the table. 
We can also locate the reference microphone in 
coordinates that are relative to each of the speakers. These 
are just approximations to create a generic model from 
where to calculate the RIRs. For the simulation, we 
consider a simplified model with a small room, large wall 
absorptions, with a limited number of images due to sound 
reflections. The acoustic simulation is thus meant to 

capture early reflections and avoid complex, long-delayed 
reflections. 

B. VIRTUAL MICROPHONES   
The spatial locations of the virtual microphones can be 
directly related to the source audio frequencies. To 
understand the issues, instead of the classic time-sampling, 
consider reconstructing an acoustic signal from its 3D 
spatial samples at a fixed time. In this case, the 3D 
sampling array separation d between the microphones 
must be less than half the wavelength λ of the audio source 
signal. Therefore, d should be 

 

															𝑑 ≤
𝜆+,-
2 ,																																		(5) 

 
which translates to a maximum frequency of 
 

														𝑓+./ ≤
𝑐
2𝑑.																																

(6) 
  

For separating the speakers, there is a need to keep the 
distance between the microphones as large as possible. At 
larger distances, the correlation patterns will be very 
different for each speaker. Unfortunately, larger distances 
imply larger wavelengths and hence smaller spatial 
frequencies in (6). 

For the maximum allowable separation, we select the 
fundamental frequency of human speech as the smallest 
spatial frequency that we are interested in. The 
fundamental frequency of human speech varies from 100 
Hz to 120 Hz approximately, with some extreme cases 
going up to 255-300 Hz (children). Based on a max 
frequency average of 180 Hz and the speed of sound c = 
343 m/s, we set the maximum separation for each 
microphone to: 

 

					𝑑 ≤
343	𝑚/𝑠
2(180𝐻𝑧) = 0.95𝑚.																		(7) 

  
 For separating the voices of children, we clearly need to 
consider much smaller separations that correspond to 
higher frequencies. After some experimentation, we set 
𝑑 = 0.05m for the final collaborative learning 
environment used for the final classification experiments 
presented in section IV.C. Here, we note that 𝑑 = 0.05m 
corresponds to a maximum frequency of 3.43 KHz. 
 We present the proposed virtual microphone geometry 
in Fig. 3. Here, the speakers represent the sources 	𝐽  (𝐽 =
3, but this number varies). The dark microphone (labeled 
M1 in the center) is the only real microphone and 
represents the recording microphone in the actual physical 
environment. The rest of the microphones are virtual 
(𝑁 = 5). 
 The distance between the microphones determines the 
Time Difference of Arrival (TDOA) between the 
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microphones. The TDOA is simply defined as the 
difference in time a signal takes to reach two points 
separated by a certain distance in space. Initially, let us 
assume that fig. 2 is an ideal representation where there are 
no reflections or room absorptions. Then, the TDOA of an 
active speaker will be unique to at least a pair of 
microphones, either virtual or physical. For example, if 
speaker 3 is active, then the TDOA between M5 and M3 
will be the same, and different from the TDOA between 
M2 and M3. These TDOAs are unique for speaker 3. 
Without loss of generality, we expect the unique property 
to hold for more complex models that we consider here. 
 

 
 
Figure 3: Example placements of the virtual microphones and 
student speakers for the proposed method. 
 

Let 𝑟,,'(𝑡) = 𝑥,(𝑡)⊛ 𝑥'(𝑡) denote the cross-correlation 
between microphone signals 𝑥,(𝑡), 𝑥'(𝑡). We then define 
the normalized cross-correlation using: 

𝑅,,'(𝑡) =
$
.∙1
	𝑟,,'(𝑡),																										(8) 

where 𝑎, 𝑏 are defined using: 

𝑎 = 	O∑ 𝑥,)(𝑡)2  and  𝑏 = 	P∑ 𝑥')(𝑡)2 . 

We are interested in the location of the peak of the 
normalized cross-correlation function defined by: 

     𝑇,,' = argmax	𝑅,,'(𝑡).																		(9)	
If a source signal propagates to microphones 𝑖, 𝑗, then 

𝑇,,' represents the time lag that it takes for the signal to 
reach  𝑗 after reaching 𝑖. Thus, 𝑇,,' > 0 implies that the 
signal arrived at microphone 𝑖 before 𝑗. On the other hand, 
𝑇,,' < 0 implies that the signal arrived at microphone 𝑗 
before 𝑖. The cross-correlation matrix of all possible values 
𝑇,,' will be used for determining the locations of the 
speakers. 
 Before using 𝑇,,' for speaker recognition, we provide a 
summary of its properties. First, it is clear that the diagonal 
is zero. Second, based on the definition, it is clear that 

 
 
𝑇',, =	−𝑇,,'. Therefore, the matrix of 𝑇,,' values are anti-
symmetric. Hence, for differentiating among speakers, we 
only need to use the entries above or below the diagonal. 
 To develop a model for the approach, we consider the 
problem of recognizing one of several possible speakers  
from a given audio segment. First, we need to construct 
virtual microphone approximations to ℎ',!(𝑡). Second, we 
estimate the correlation matrix features 𝑇+ under the 
assumption that speaker 𝑚 is talking while all other 
speakers remain quiet:  𝑠!(𝑡) = 0, 𝑘 ≠ 𝑚. These  𝑇+ 
models are only computed once here. They do not need to 
be computed for each audio segment. Third, for each audio 
segment, we compute 𝑇, the cross-correlation matrix of the 
actual signal. Fourth, we estimate the active speaker by 
solving: 
 

max
+

		match(𝑇, 𝑇+), 																	(10) 
 

where match (.,.) measures the agreement between 𝑇	𝑎𝑛𝑑 
	𝑇+. We thus allocate the speaker 𝑛 = 𝑚 that gives the 
best match among all considered speakers. A simple match 
function is given by the number of template entries that 
match as given by:  

match(𝑇, 𝑇+) =77	𝛿`𝑇,,' − 𝑇,,'+a
',

, 

where  𝛿`𝑇,,' − 𝑇,,'+a is the discrete delta function that is 1 
when the correlation pattern match with 𝑇,,' = 𝑇,,'+, and it 
is 0 when they are different: 𝑇,,' ≠ 𝑇,,'+. 
 Our approach rejects background noise using 
hypothesized directions and correlation pattern matching. 
Firstly, the RIRs model the position of the audio sources. 
Hence, acoustic sources that do not match the model will 
generate a different correlation pattern that will not affect 
our results. We use this approach to model background 
noise source (e.g., S6 in Fig. 6). Secondly, we note that our 
use of correlation patterns remains robust with respect to 
additive white noise. To see this, note that while additive 
acoustic noise can reduce the cross-correlation coefficient 
𝑅,,' (see equation (8)), the correlation patterns defined in 
terms of 𝑇,,' only depend on the location of the correlation-
pattern maximum (see equation (9)). Thus, a uniform 
reduction of 𝑅,,'(𝑡) throughout time will not be expected 
to change the location of its maximum. 
 The proposed method can be extended to address the 
case when we need to differentiate among more than one 
speaker talking at the same time within the same group. 
For this case, we would need to consider a much larger 
number of correlation patterns. For example, for detecting 
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up to 𝑛 active speakers talking at the same time, we have 
2- possibilities. However, the approach can be further 
complicated by the need to account for having students 
speaking at very different levels (e.g., loudly versus 
quietly).  
 Clearly though, within the group, we are not interested 
in having multiple speakers talking at the same time. 
Within the proposed framework, a simple solution would 
be to place additional microphones within each student 
subgroup.  

IV. IMPLEMENTATION, VALIDATION, AND RESULTS 
In this section, we present the experiments conducted to 
evaluate the capability of the proposed method to identify 
speakers in audio segments. We begin by applying the 
principles of section III to an acoustic model based on an 
approximated room geometry. We validate the physical 
model using audio experiments. We then provide speaker 
diarization results and compare our method against 
Amazon AWS and Google Cloud. 

A. ACOUSTIC MODEL PARAMETERS 
In Fig. 4, we present the basic setup for our acoustic 
simulation. We considered a maximum of 5 participants 
and hence 5 possible source directions. For the cases of 2, 
3, or 4 speakers, we simply selected the closest directions 
from the 5 basic directions of Fig. 4. Hence, we did not re-
calibrate our models for every possible variation on the 
acoustic scene. Furthermore, we also considered all 
speakers to be at the same height from the table (0.25m). 
For realistic simulation, we also modeled room noise as a 
sixth speaker placed at the lower-left part of Fig. 4. 
 To estimate the RIRs, we used Pyroomacoustics 
[30,31,32]. Pyroomacoustics is an open-source software 
system that supports the reproducibility of our results. 
Pyroomacoustics calculates the RIRs using the Image 
Source Model Method (ISM) [33]. Image sources are 
computed based on the distance of each speaker to the 
absorbing boundaries. For the simulation, the software 
assumes vertical incidence on the walls and the corners. To 
control the number of generated sources, we do not 
consider greatly attenuated sources that are associated with 
long delays. 
 For the acoustic simulation, the generation of a large 
number of simulated sources tends to provide for a better 
approximation. We simulated the learning environments 
by assuming acoustic walls with high reflection 
coefficients located at a short distance behind each 
speaker. As a result, each speaker generated 2 to 3 reflected 
sources that were propagated to the virtual microphones. 
The distance between the table and the ceiling was set to 
2m. 
 
 
 
 

 
Figure 4: Collaborative environment used for determining 

speakers from a single central microphone. 
 

B. PHYSICAL MODEL SIMULATION AND VALIDATION 
To validate our model simulation approach, we compared 
correlation patterns generated by our simulation 
environment and physical measurements using actual 
microphones and speakers. We consider two setups for 
validating our approach. First, we compare the 
performance of the virtual microphone array simulation 
against a physical microphone array. Second, we perform 
a controlled audio experiment to understand some of the 
limitations of the virtual microphone array in collaborative 
learning environments. 
 Firstly, for validation using an array of physical 
microphones, we used the same microphones as the central 
microphone in our video recordings. The microphones 
were calibrated using a sinusoidal source of 450 Hz, and 
we compensated for any physical delay during the audio 
recordings. The model absorption was empirically set at 
0.95. The 2D model included 4 loudspeakers and 5 
microphones as depicted in Fig. 5. In the Pyroomacoustics 
model, sound reflections were simulated using 8 images of 
the actual audio sources. 
 As shown in Fig. 5, the physical microphones were 
placed out closer to the speakers. The larger separations 
still satisfied the constraint given in equation (5). We note  
 

Figure 5: Physical Microphone array setup for validating the 
virtual microphone simulation environment. 

Mic1

Mic4

Mic5
Mic6Speaker 1 Speaker 3

Speaker 4

Speaker 2
Mic3
(Ref.)

Mic2
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TABLE I 
CROSS-CORRELATION PATTERN VALIDATION USING PHYSICAL 

MICROPHONE ARRAY. NUMBERS REFER TO ARRAY INDICES. 

  

 
Figure 6: 2-D Model for Controlled Experiments 

 
that larger separations were needed to keep apart the large 
physical microphones, as opposed to the virtual 
microphones that do not have such constraints. 
 To generate the physical measurements, we used an 
anechoic male voice of 2 seconds duration. The voice was 
played through the four speakers and was simultaneously 
recorded through the six microphones. The same signals 
were simulated using Pyroomacoustics. For each 
recording, we compute the resulting correlation patterns. 

A comparison of the measured correlation patterns is 
given in Table I. Here, we note that the signals were 
sampled at 48 kHz, at the same sampling frequency as our 
video recordings. The results summarized in Table I 
indicate general agreement between the simulation and the 
actual physical measurements. In most cases, the error is 
less than 20%. Most importantly, there are significant 
differences between the correlation patterns from different 
speakers. Hence, the simulation model appears to be 
sufficiently accurate for differentiating speakers based on 
their positions.  

Secondly, we validate our approach in a controlled 
audio environment. Here, we study the performance of the 
system in identifying different speakers. For this 
experiment, we played each source from different 
loudspeakers in our audio lab and used only the central 
microphone M3 to capture the audio. To demonstrate the 
method is not biased to any speech or speaker, speaker 2 
(S2) repeats the same speech as speaker 1 (S1) on two 
occasions. Noise was injected into the environment by 
playing a compact disk (CD) containing a recording of 
conversational room noise. The CD player was located at 
about 2 m from the reference microphone. The audio was 

segmented using a Voice Activity Detector preserving the 
noisy segments. The physical dimensions of the model and 
the location of the microphones were adjusted to better 
follow the geometry of the acoustic scene depicted in Fig. 
4. The final 2-D model is shown in Fig. 6.  

 We employed the Diarization Error Rate (DER) [34,35] 
as a metric for Diarization performance. The DER is 
defined as the fraction of the time that is not attributed 
correctly to a speaker or non-speech [36]. It is estimated 
using: 
 

DER =
FA +Miss + Overlap + Confusion

Reference	Lenght 	,								(11) 

 
where FA is the length of False Alarms; Miss is the length 
of missed speech segments; Overlap is the total length of 
overlapped speech; Confusion is the total length of 
misclassified segments, and the Reference Length is the 
total length of the audio reference. We did not use Overlap 
for our tests. 

The test consisted of playing three separate audio tracks 
containing only two speakers at a time, and one audio track 
containing four different speakers. Audio samples A and B 
were played as speakers 1 and 3, while audio sample C was 
played as speakers 2 and 4. Audio sample D was played as 
speakers 1, 2, 3 and 4. The audio was divided into 
segments with a maximum length of 1.5 s, and a minimum 
of 0.5 s. We used 1 s long samples from each of the 
speakers to train the model. As described earlier, for 
classification, we used a simple match-and-vote classifier 
where the speaker position with the highest number of 
cross-correlation matches with respect to the training 
template is selected as the current speaker.  

Table II provides a summary of the results. Overall, the 
results indicate a good DER of not more than 0.27 in the 
worst case. The results validate the approach on this 
limited validation experiment. We present a careful 
comparison against state-of-the-art methods in the 
following section. 

 
TABLE II 

PROPOSED SYSTEM VALIDATION IN ACOUSTIC LAB ENVIRONMENT  
Sample & 
No.  of 
Speakers 

No. of 
Segs Correct FA Miss Conf. DER 

A: 2 Speak. 116 98 10 0 8 0.12 
B: 2 Speak. 9 7 0 2 0 0.19 
C: 2 Speak. 15 12 0 2 1 0.19 
D: 4 Speak. 37 27 2 0 8 0.27 

C. RESULTS FOR COLLABORATIVE LEARNING 
ENVIRONMENTS 
We next present comprehensive validation of our approach 
based on actual collaborative classroom videos. We 
provide detailed analysis for complex audio samples 
collected during the afterschool program [37]. The 
corresponding videos contain acoustic scenes like the one 
shown in Fig. 4, with 2, 3, 4, and 5 primary participants in 
a single collaborative group. The classroom environment 

 S1 S2 S3 S4 
 SIM. G.T. SIM. G.T. SIM. G.T. SIM. G.T. 

1-3 -29 -17 -62 -81 78 94 36 19 
1-6 10 15 -53 -65 91 98 4 3 
3-6 40 34 9 15 13 3 -30 -16 
2-4 -54 -44 -95 -78 24 25 -99 -78 
2-5 -24 -25 -95 -81 81 73 -129 -104 
4-5 29 20 0 -1 56 48 -28 -25 
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was very noisy with 5 collaborative small groups each 
consisting of 3 to 4 students, 5 facilitators, 2 teachers, and 
5 researchers in the same room (over 32 speakers). 
 To process the videos, we assume the baseline model 
presented in Fig. 6. The parameters of the model are set as 
described in subsection IV.A. We basically made minor 
adjustments to the baseline model to reflect the number of 
speakers and their locations, while maintaining the same 
geometry for the virtual microphone array. 

We constructed 8 carefully chosen examples with 2, 3, 
4, and 5 speakers. For the ground truth, we reviewed the 
videos to provide 0.5 second accuracy within a total 
duration of three minutes. The ground truth involved a 
manual review of the video clips to associate lip 
movements to specific speakers. Here, we note that the 
proposed method allowed us to identify each speaker based 
on their location. This was not possible for Amazon AWS 
and Google Cloud. Instead, for comparison purposes, we 
mapped the results from Amazon AWS and Google cloud 
to the most likely speaker that would give the best results. 

TABLE III. 
ACTIVE SPEAKER TIME ESTIMATION IN THE CLASSROOM 

 

 
 

  

Audio 
Sample 

No. of 
Speakers Speaker 

Ground 
Truth 

Time (s) 

Proposed Method Amazon AWS Google Cloud 

Time (s) Error % Time (s) Error % Time (s) Error % 

1 2 
S1 117.00 99.99 14.54 94.52 19.21 127.10 8.63 
S2 27.52 34.62 25.80 74.47 170.60 0.00 100.00 

2 2 
S1 107.00 113.00 5.61 120.90 12.99 73.40 31.40 
S2 18.03 23.44 30.01 45.46 152.14 66.59 269.33 

3 3 
S1 6.00 20.69 244.83 9.88 64.67 66.59 1009.83 
S2 102.52 100.52 1.95 143.74 40.21 50.80 50.45 

S3 9.26 13.45 45.25 0.00 100.00 10.29 11.12 

4 3 
S1 65.74 68.93 4.85 106.36 61.79 80.20 22.00 
S2 27.66 25.38 8.24 37.67 36.19 31.39 13.49 
S3 10.86 15.30 40.88 0.00 100.00 0.00 100.00 

5 4 

S1 28.29 41.61 47.08 52.19 84.48 0.00 100.00 
S2 11.17 14.69 31.51 8.93 20.05 8.30 25.69 

S3 42.27 68.23 61.41 0.00 100.00 35.00 17.20 
S4 73.84 91.57 24.01 0.00 100.00 94.30 27.71 

6 4 

S1 24.48 25.39 3.72 78.70 221.49 53.59 118.91 
S2 22.28 13.28 40.39 36.95 65.84 29.19 31.01 
S3 25.75 27.69 7.53 0.00 100.00 15.29 40.62 
S4 1.20 4.20 250.00 38.05 3070.83 3.30 175.00 

7 5 

S1 20.25 7.99 60.54 0.00 100.00 5.09 74.86 
S2 69.19 64.53 6.74 88.77 28.30 24.90 64.01 
S3 9.41 10.71 13.82 0.00 100.00 0.00 100.00 
S4 43.12 48.86 13.31 60.04 39.24 54.70 26.86 
S5 12.27 10.93 10.92 0.00 100.00 46.60 279.79 

8 5 

S1 14.28 18.80 31.65 0.00 100.00 6.29 55.95 

S2 34.56 42.05 21.67 53.13 53.73 29.59 14.38 
S3 2.50 3.60 44.00 0.00 100.00 7.49 199.60 
S4 15.23 22.27 46.22 17.61 15.63 11.20 26.46 
S5 47.67 27.54 42.23 56.02 17.52 29.59 37.93 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3177584, IEEE Access

 

10 
 

To train our system, we used a noisy sample of 1.8 
seconds from each speaker. Here, we note that our method 
does not depend on the specific speakers. We use training 
to estimate the RIRs that depend on the relative location of 
the speakers with respect to the physical microphone. 
Hence, as long as the speakers return to their seats, we can 
handle any unknown speaker that takes their seat at the 
table. Furthermore, as discussed earlier, we only require a 
rough estimate of the sitting arrangement. There is no need 
to retrain the model unless there are very significant 
changes in their seating arrangements. 

We used simple voice activity detection to segment the 
audio. We used a maximum audio segment length of 1.2 
seconds and discarded audio segments that were shorter 
than 0.5 seconds. 

We present detailed comparative results in Table III and 
summary results in Table IV. We begin with a summary of 
the results and then provide a much more detailed analysis. 

From the summary results, it is clear that the proposed 
method significantly outperformed Amazon AWS and 
Google Cloud. For the results, the percentage error is given 
in terms of the actual speaker time as given by: 

 

PercentError =
estimated	time − true	time

true	time ∗ 100.		 
 
In all cases, the proposed method gave substantially lower 
error rates. With two speakers, the error was acceptable at 
less than 20%. In comparison, the error rates for all 
alternative methods were much higher in every possible 
sample. As we shall describe next, alternative methods 
failed in many instances.  

 We provide a detailed analysis of the results in Table 
IV. We use red highlighting to denote cases of dramatic 
failures. In such cases, we have that a speaker was 
completely missed, or the estimated talking time of the 
speaker had more than a 100% error (e.g., an excessive 
over-estimation of speaker talking time).  

Out of 28 possible speakers across all examples, 
Amazon AWS gave failing results for 14 cases (50%), 
Google cloud gave failing results for 10 cases (36%), while 
the proposed method gave failing results for 2 cases (7%). 
Here, it is interesting to note that the proposed method 
never failed to detect a speaker (0% error), while Amazon 
AWS could not detect any talking time for 10 cases (36%). 
Google cloud failed to detect any talking time for 4 cases 
(14%). It is also interesting to note that we have dramatic 
failure cases for all 8 samples for Amazon AWS and 
Google Cloud. In contrast, for the proposed method, we 
have 2 samples with examples of over-estimation, with 6 
samples being free of dramatic failures. We use green 
highlighting to denote cases where the total estimated 
speaking time gave 20% or less error. Based on this 
criterion, both AWS and Google Cloud gave satisfactory 
results in 5 cases (18%) versus 11 cases (39%) for the 
proposed method. 

 Overall, it is clear that the problem remains challenging. 
However, the results from the proposed method 
demonstrate promise in the proposed approach that cannot 
be matched by the current state-of-the-art methods. 
 

TABLE IV 
SUMMARY OF COMPARATIVE RESULTS FOR ESTIMATING AUDIO 

DURATION FOR EACH ACTIVE SPEAKER 
No. of 

Speakers 
Proposed 
Method 

Amazon 
AWS 

Google 
Cloud 

2 18.99 88.74 102.34 
3 57.67 67.14 201.15 
4 58.21 470.34 67.02 
5 29.11 65.44 87.98 

Total 42.10 184.82 108.29 
 
V. CONCLUSIONS 
In this paper, we have demonstrated the advantages of using 
virtual microphones and cross-correlation patterns to 
identify speakers in very challenging classroom 
environments from a single-channel recording. Our method 
presented an error rate that was significantly better than 
state-of-the-art systems from Amazon AWS and Google 
Cloud. Furthermore, in contrast with other methods, our 
proposed approach does not require extensive training, and 
it is directly applicable in challenging classroom audio 
environments where clean audio datasets are not available.  
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