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Abstract—The emergence of HEVC software implementations
allows for several different encoding options. Unfortunately, there
is no established method for selecting optimal encoding configu-
rations. The current paper proposes the use of a multi-objective
optimization framework for selecting optimal encodings that
can be subsequently used for solving constrained optimization
problems in quality, bitrate, and encoding time. The proposed
optimization framework is used to select optimal configurations
from 3,600 possibilities based on GOP configurations and other
relevant HEVC software options.

We demonstrate our approach using the x265 encoder with
examples from the UT LIVE video quality database and a
standard 2K video example. The results demonstrate the success
of the proposed approach by selecting optimal configurations and
eliminating several suboptimal encodings.

Index Terms—HEVC, multi-objective optimization, Pareto
front, GOP configurations.

I. INTRODUCTION

The emergence of the HEVC standard has provided numer-
ous encoding options that affect encoding times, video quality,
and required bitrate [1]–[4]. In general, there are complex
inter-dependencies between encoding time, video quality, and
required bitrate. Furthermore, these complex relationships are
strongly affected by video content. Beyond the standard use
of rate-distortion theoretic methods, this paper introduces
optimization methods based on a family of GOP configurations
and other HEVC encoding parameters for jointly optimizing
encoding time, video quality, and bitrate.

To formally define the multi-objective optimization frame-
work, let Q denote a metric of video quality, BPS denote the
number of bits per pixel, and T denote the required encoding
time. An optimal video encoding configuration needs to si-
multaneously maximize image quality, minimize the required
bitrate and encoding time. More compactly, in vector form,
the multi-objective optimization framework requires that we
solve:

min
c

(−Q(c), BPS(c), T(c)) (1)

for the optimal encoding configuration c. Here, we note that
the negative sign for video quality comes from the fact that
maximizing the video quality is equivalent to minimizing the
negative of video quality. Furthermore, in what follows, we
will drop the c argument from the objectives. In other words,
we write Q, BPS, T with the understanding that they depend on
the configuration c.

The solution of the vector optimization problem given in
(1) defines a Pareto front. The Pareto front is defined by the
set of configurations for which no other configuration can be
found that improves on all of the objectives (Q, BPS, T) at the
same time. Thus, a configuration copt is optimal if there is
no way to find another configuration cother that gives better
image quality, lower bitrate, and requires less encoding time.

In order to select an optimal configuration, we also define
optimal constrained optimization modes as (see related related
work in [5]–[7]. Here, the goal is to find optimal solutions
subject to realistic constraints on encoding (T ≤ Tmax), bitrate
(BPS ≤ BPSmax), and image quality (Q ≥ Qmin). We are
primarily interested in optimal modes defined as [6]: (i)
minimum encoding time mode, (ii) minimum bitrate mode,
and (iii) maximum video quality mode, subject to opposing
constraints from the two remaining objectives.

There are several challenges associated with the application
of the multi-objective framework to HEVC encoding. First, we
note that the Pareto-front will significantly vary from video
to video, and even from GOP to GOP within each video.
In [5], [6], the authors considered a bottom up approach
that allowed the variation of DCT hardware cores and the
quantization parameter (QP) for each image. In [7], in another
bottom-up approach, the authors considered a multi-objective
optimization approach that was applied to HEVC intra-coding.

Here, we take a top down approach where we consider
the development of a unifying approach for all x265 HEVC
configurations. Second, it is important to acknowledge that
the current x265 HEVC configurations provide a very sparse
sampling of the space of encoding time - video quality - bi-
trate. Unfortunately, such sparsity imposes fundamental limits
to the usefulness of the proposed, multi-objective optimization
framework [8]. Thus, to address this problem, the current
paper introduces extended HEVC configurations in x265 that
include new GOP configurations. This combination of new
GOP configurations with the variation of QP, De-blocking
filtering, and other parameters produces a large number of
configurations that allows for significantly better sampling of
the multi-objective space. Third, the use of extended HEVC
configurations requires the compression of each video un-
der each configuration and thus impose significant storage
requirements. To address this issue, we introduce an offline
approach that only stores the optimal configuration vectors



function OPTENC(V, Vc, ParetoFront, OptPars)
. Input: video V, Pareto front in ParetoFront,
. optimization mode specified in OptPars.
. Output: compressed video in Vc.

ParetoEntry ← Find an optimal solution specified
by OptPars that lies on ParetoFront.

if (valid ParetoEntry has been found) then
Vc ← Compress V using configuration

(P, GOPconfig, ParVec)
extracted from ParetoEntry.

else
ParetoEntry ← Search ParetoFront

for an entry that violates the constraints by the
least amount.

Vc ← Compress V using configuration
(P, GOPconfig, ParVec)
extracted from ParetoEntry.

end if
end function

Fig. 1. Optimal mode encoding using the Pareto front.

(without the compressed videos) associated with the Pareto
front. Then, the optimal configuration is selected by solving
the optimization problem associated with each optimization
mode. The optimally compressed video is then re-produced
by applying the optimal configurations with the x265 encoder.

In terms of related work, we also mention earlier research
focused on the use of multiple objectives in hardware imple-
mentations, emergency video transmission, and intra encoding.
We have the use of parallel cores for single-pixel processors in
[9], the development of one-dimensional filtering in [10], and
two-dimensional filter bank approaches in [11]. More recently,
we have the development of scalable and fast architectures for
the computation of the Discrete Periodic Radon Transform in
[12]. In [13], we also have the development of adaptive HEVC
compression methods for emergency scenery videos. Similarly,
in [14], we have developed optimization methods that can be
used for intra-coding video compression. The current paper
fundamentally differs from [13], [14] in that there is a focus
on general-purpose videos using new GOP configurations that
account for most of the Pareto-optimal configurations (see
section III).

The rest of the paper is organized into four sections. In
section II, we provide the methodology used in the paper. We
provide the results in III and give concluding remarks in IV.

II. METHODOLOGY

We summarize the proposed method in Figure 1. For each
video, we pre-compute its Pareto front. As stated earlier,
the resulting Pareto front is simply expressed in terms of a
mapping from each optimal GOP configuration, HEVC profile,
and related parameters to the three objective functions (video
quality, encoding time, and bitrate requirements). For any

(a) New GOP B2 configura-
tion

(b) New GOP B6 configuration

Fig. 2. New GOP configurations. (a) Extended GOP configuration by
removing a b frame. (b) Extended GOP configuration by adding a b frame.

given optimization mode, we select and apply the optimal
encoding configuration as shown in Fig. 1.

As stated earlier, efficient implementation of the optimiza-
tion modes requires an extension of the standard GOP config-
urations. We present a diagram with some of the new GOP
configurations in Fig. 2. We provide a detailed summary of
the proposed GOP configurations in Table I.

From the Pareto front, we can select optimal configurations
that can solve the following constrained optimization prob-
lems:

• Minimum encoding time mode:

min
EP

T subject to (Q ≥ Qmin) and (BPS ≤ BPSmax)

(2)
In this mode, the goal is to minimize encoding time
provided that the video can be communicated within the
given bitrate and it is of sufficiently good quality.

• Minimum bitrate mode:

min
EP

BPS subject to (Q ≥ Qmin) and (T ≤ Tmax).

(3)
In this mode, the goal is to minimize bandwidth require-
ments provided that the video is of sufficient quality and
we do not spend a large amount of time encoding it.

• Maximum video quality mode:

max
EP

Q subject to (BPS < BPSmax) and (T < Tmax).

(4)
Here, the goal is to reconstruct the video with the highest
possible video quality that does not require more band-
width that is available and within reasonable encoding
time.

III. RESULTS

For testing our approach, we consider optimal encoding
for videos as shown in Figs. 3(a), 3(b), and 3 (c) [15]–
[18]. For measuring the encoding time, we run the x265 ver
1.4 reference software [4] on a Windows 8 64-bit platform
with 64GB RAM using an Intel(R) Xeon(R) CPU E5-2630v3
microprocessor with 8 cores (16 threads) running at 2.40 GHz.
Furthermore, we only consider the use of PSNR for evaluating
video quality although our approach can also be applied to
other metrics provided that they can be computed fast.



TABLE I
ENCODER GOP CONFIGURATION SETUP BROKEN INTO TWO GROUPS.

GROUP A PRESETS ARE EXTENSIONS OF GOP B4 INTO NEW GOP B2,B6
AND CONSIST OF: ULTRA FAST (U), SUPER FAST (S), VERY FAST (V),

FASTER (FR), FAST (F), MEDIUM (M), AND SLOW (S). GROUP B PROFILES
ARE EXTENSIONS OF DEFAULT GOP B8 INTO NEW GOP B6,B10 AND

CONSISTS: SLOWER (SL), VERY SLOW (VS) AND PLACEBO (P). THERE IS
A TOTAL OF 3600 POSSIBLE CONFIGURATIONS.

Parameter Profile Group A Profile Group B
Presets U, S, V, Fr, F, M, S Sl, Vs, P
GOP AI, B2, B4, B6, ZL AI, B6, B8, B10, ZL
GOP Str Open/Close Open/Close
QP 22, 27, 32, 37, 42 22, 27, 32, 37, 42
SAO On/Off On/Off
DBF On/Off On/Off
Tuning PSNR, ZL, FD PSNR, ZL, FD
Configs. 360 per profile 360 per profile

TABLE II
OPTIMAL GOP CONFIGURATIONS. THE NEW GOP CONFIGURATIONS ARE

SHOWN IN BOLD.

GOP Optimal Configurations (%)
conf. Jockey Pa Rb
AI 63 (14.38%) 101 (11.46%) 34 (59.64%)
B2 145 (33.1%) 208 (23.6%) 5 (8.77%)
B4 25 (5.7%) 179 (20.31%) 3 (5.2%)
B6 33 (7.53%) 136 (15.43%) 1 (1.75%)
B8 6 (1.36%) 27 (3.06%) 0 (%)
B10 0 (0%) 17 (1.92%) 0 (%)
ZL 166 (37.89%) 213 (24.17%) 14 (24.56%)
Pareto 438 (100%) 881 (100%) 57 (100%)

Overall, as we document in Fig. 3, we find that we can
generate relatively dense Pareto fronts for the Jockey and
Pedestrian video examples. On the other hand, the very com-
plex motions of the riverbed example generated a relatively
sparse Pareto front. Furthermore, we note that the new GOP
configurations contributed (i) 40.64 % of the optimal 438
configurations for the UHD video, and (ii) 40.97 % of the
optimal 881 configurations for the Pedestrian video. Refer to
Table II for more details.

The relatively dense Pareto fronts for the Jockey and Pedes-
trian videos allow fine optimization of the modes described by
equations (2), (3), and (4). We present three DRASTIC mode
optimization examples in Table III. For the examples, all of
the constraints have been met.

Also, as expected, the optimal mode result from finding
solutions that are close to the bounds required by at-least
one of the constraints. To see this, we consider the maximum
quality mode in Table III that requires that Tmax < 5 seconds
and BPSmax < 5000 bps. Then, the maximum quality mode
requires 4.8 seconds of total encoding time that is close to the
upper bound of 5 seconds. On the other hand, we note that
there was a lot more bitrate that could have been used. Yet,
the optimization method maximized image quality to a level
42.8 dB using less bitrate.

(a) Jockey [18]. (b) Pedestrian [15], [16]. (c) Riverbed [15], [16].

(d) Pareto front for UHD video: Jockey (1920x1080, 30 fps, 150
frames).

(e) Pareto Front for Pedestrian video (768x432, 25 fps, 250
frames).

(f) Pareto Front for Riverbed video 768x432

Fig. 3. Test videos and resulting Pareto fronts. (a) UHD video with strong
predictable, translational motions. (b) Pedestrian video with multiple, yet
predictable, translational motions. (c) Riverbed video with very complicated
motions created by the flowing water. (d) Pareto front for UHD video
demonstrating a relatively dense front. (e) Pareto front for Pedestrian video
demonstrating a relatively dense front. (f) Pareto front for Riverbed video
with fewer optimal points on pareto front.



TABLE III
MODE OPTIMIZATION. WE MEASURE BITRATE IN BITS PER SECOND,

PSNR IN DB, AND TIME IN SECONDS WE USE BR FOR BITRATE, Q FOR
IMAGE QUALITY, AND T FOR ENCODING TIME. IN EACH CASE, WE

PRESENT THE QUANTITY THAT IS OPTIMIZED IN BOLD. REFER TO TABLE I
FOR ABBREVIATIONS. REFER TO (2), (3), AND (4) FOR DEFINTIONS OF THE

MODES AND THE CONSTRAINTS. NOTE THAT ALL OF THE CONSTRAINTS
HAVE BEEN MET IN THESE EXAMPLES.

2KJockey 1920x1080 @30 FPS, 150 frames
Mode GOP Profile Time Bitrate PSNR
Max Q B2 SF 4.8 4167.3 42.8
Constraints 5.0 5000.0
Min T B2 M 6.9 1049.2 39.1
Constraints 1300.0 39.0

Pedestrian 768x432 @25 FPS, 250 frames
Mode GOP Profile Time Bitrate PSNR
Min BR ZL Fr 2.3 147.0 31.9
Constraints 3.0 31.0

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a unifying framework that
allows us to jointly optimize for encoding time, bitrate, and
image quality. The approach eliminates several suboptimal
configurations. Furthermore, except of the rare case of irreg-
ular motions, a set of new GOP configurations can be used
to generate dense samplings of the Pareto front. The new
GOP configurations also enable fine optimization methods that
can be used to minimize encoding time, maximize quality, or
reduce bandwidth requirements.

Current research is focused on modeling the Pareto front so
as to eliminate the need to compute all possible configurations.
Furthermore, we are also investigating methods for dynami-
cally adjusting the constrained optimization modes based on
video content.
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