
Context-Sensitive Human Activity
Classification in Collaborative Learning

Environments
Abigail Ruth Jacoby1, Marios S. Pattichis1, Sylvia Celedón-Pattichis2 and Carlos LópezLeiva2

abby.jacoby@gmail.com, {pattichi,sceledon, callopez}@unm.edu
1 image and video Processing and Communications Lab (ivpcl.unm.edu)

Dept. of Electrical and Computer Engineering
University of New Mexico, United States.

2 Dept. of Language, Literacy, and Sociocultural Studies
University of New Mexico, United States.

Abstract—Human activity classification remains challenging
due to the strong need to eliminate structural noise, the multitude
of possible activities, and the strong variations in video acqui-
sition. The current paper explores the study of human activity
classification in a collaborative learning environment.

This paper explores the use of color based object detection
in conjunction with contextualization of object interaction to
isolate motion vectors specific to each human activity. The basic
approach is to make use of separate classifiers for each activity.
Here, we consider the detection of typing, writing, and talking
activities in raw videos.

The method was tested using 43 uncropped video clips with
620 video frames for writing, 1050 for typing, and 1755 frames
for talking. Using simple KNN classifiers, the method gave
accuracies of 72.6% for writing, 71% for typing and 84.6%
for talking. Classification accuracy improved to 92.5% (writing),
82.5% (typing) and 99.7% (talking) with the use of Deep Neural
Networks.

Index Terms—human activity classification; context-based met-
hods.

I. INTRODUCTION

Human activity recognition in video presents significant
challenges. Many issues stem from the wide variety of identi-
fiable human activities which may appear concurrently. There
is clearly no established method for handling arbitrary human
activities.

We begin with a short summary of recent research in
human activity recognition. In [1], the authors used a weakly
supervised Recursive Neural Net (RNN) with a probabilistic
inference model to identify human activity over extended
sequences. In [2], the authors used RGB color model with
optical flow features to train a Long Short Term Memory
Network (LSTM) to achieve 87% accuracy on the UFC101
dataset. In [3], the use of different neural networks for the
same problem was explored. Within the same study, they
showed that the use of optical flow did not have a significant
impact on their approach. In [4], the authors investigated
methods for accelerating the computations. In [5], the authors
introduced the use of procedural neural networks (ProcNets)
as a weakly supervised approach to learning based on temporal

Fig. 1: Human Activity Recognition in Collaborative Learning
Environments. In the example, we have a typing and a talking
activity.

alignment. More recent studies are based on LSTM as reported
in [6] and [7].

For the purposes of this paper, we are interested in under-
standing how students learn programming in a collaborative
learning environment (see Fig. 1). We identified talking, wri-
ting, and typing as the primary activities of interest. Here,
we are strongly interested in listening to students talk about
coding, understanding how much time they spent typing their
code, and monitoring the amount of time spent working with
pencil and paper.

Our proposed approach is to consider the contextualized
interaction of a collection of objects. Thus, in our approach,
writing requires the detection of the pencil, the paper, and then
the motion vectors of the pencil on the paper. Similarly, typing
requires the detection of the keyboard, the human fingers on
the keyboard, and the motion vectors associated with typing.
Once all of the candidate objects and associated motions have
been detected, we form a feature vector that is then fed to a
classifier for identifying the activity. While our current paper
is not concerned with fast implementations, for future work
in hardware acceleration, we refer to our recent work in [8],

141978-1-5386-6568-8/18/$31.00 ©2018 IEEE SSIAI 2018

Fig. 2: General diagram of the human activity detection
method.

[9] for implementing fast convolutions and cross-correlations
using scalable architectures.

The remainder of this paper is organized into three sections.
In section II, we provide a detailed description of the proposed
method. We summarize our results in section III and provide
concluding remarks in section IV.

II. METHODOLOGY

We present an overview of the method in Fig. 2. Initially,
we apply color-based segmentation to extract the candidate
objects of interest. For each video frame, we extract motion
vectors that are specific to the objects of interest. We then
apply context-based rules to filter and identify components
that can be associated with specific activities (see Table I).
For the specific components of interest, we extract motion
vector features that are used for activity classification. In what
follows, we describe the various methods that are involved.

A. HSV Color Models for Pencils, Table, Paper, Keyboard, and
Faces

The goal of our use of the color models is to determine
candidate components that are further processed based on their
relative context. Thus, our use of color models produces an
over-segmentation of the objects of interest. Bound selection
was done visually using a simple database of 20 examples of
pencils, paper, tables, skin regions and keyboards. Here, we
found thresholds that worked on all images at the same time,
as verified in the visual display of all examples.

B. Context-based Processing and Feature Extraction

The color models provide candidate regions for further
processing. The candidate regions need to be carefully selected
and then processed for context by processing relations between
them. Then, a combination of checks is applied to check for
interactions between them and motion content. The histograms
of motion magnitudes and orientations are then used as featu-
res for further classification. In what follows, we provide more
details for each step.

C. KNN Classifier for Selecting Keyboard and Face Compo-
nents

For keyboard and face detection, we apply morphological
filtering to remove minor regions. We then compute the
bounding box for each region, zero-pad, convert to grayscale
(Y component in Y-Cr-Cb), and use bilinear interpolation to
resize each one of them to 128x128. We then use K-nearest

neighbor to classify each component (e.g., keyboard present
or not). The faces KNN classifier is trained using a collection
of 1,700 images from various videos within our datasets, and
labeled 0 or 1 to identify faces versus not faces respectively.
For the keyboard, mouse, and monitor, we used 170 images.

D. Writing

We summarize context-based feature extraction for the
writing activity in flowchart format in Fig. 3. Parameter
optimization was performed through a visual interface.

For writing, we first use the binary image created by
masking the table and take the bitwise and between the images
to preserve only the objects on the table. This mask is applied
to both the paper and the pencil binary images. We remove
detections with unrealistic aspect ratios (as determined by a
small training set). We then check that the pencil is on top
of a table and over top of a paper which indicates writing
may be present. The combination of color and aspect ratio for
selection achieve tolerance to rotation and scaling.

The final step is to check for motion within the region of
interest using the flow passed to the contextualization function.
If a certain motion magnitude threshold is exceeded, we then
extract the motion vectors from this region of interest and
calculate a histogram from them. Histograms are computed
per component and returned by the function. These features
are later used in determining a classification of the motion as
either writing or not writing.

E. Typing

We provide a flowchart summary of the typing activity
algorithm in Fig. 4 . In what follows, we explain each step.

Typing follows a similar identification method as for pencil
detection, with exception of a necessary extra step for elimi-
nation of large gaps between the keyboard and the monitor.
To overcome this, we calculate the convex hull from the
contour of the table, and apply a bitwise and with the resulting
threshold image from the hull to close holes within the table.

The contours are found for each of the objects in the
keyboard threshold, and after the centroids are located, we
use the ROI to first resize the slice to 128x128 and fit the
cropped grayscale image to a KNN model trained to classify
keyboards, monitors and mice.

Fig. 3: Flowchart for confirmation of a pencil’s precense prior
to motion vector extraction.

142

Fig. 4: A flowchart representing the steps to extracting the keyboard and discovery of potential typing.

Fig. 5: A keyboard which has been properly found and
classified for motion vector extraction.

If the object is determined to be a keyboard by the model,
we then do a check for hands by slicing the skin image within
the ROI box and checking to see if the remaining pixel value
sum is greater than zero. If it is, we then calculate the appended
histogram of the magnitude and phase of the optical flow as
done previously. Again we visually review the resulting ROI
boxes as an informal optimization of the parameters of each
of our contexts.

F. Talking

To identify talking, the steps are slightly different. Regions
of skin are found using the same technique as for the pencil.
Some additional processing is done in this case to expand the
areas around the extracted region using a gaussian blur before
masking the frame, this includes also using a morphological
open operation to remove noise from the similar colored
bookshelves in the background. The blurring extrapolates a
larger portion of the image around the skin area so the contour
for evaluation in the KNN is more likely to contain the full
face.

Using the threshold of this masked image, each contour is
extracted and the boxed region about the centroid is resized to
128x128, as with the keyboard, and passed to a KNN model.
If the area is matched to being a face, we apply the golden
ratio and check only the bottom portion of the face by dividing
the height by 1.618 and adding to the y value to get the top
y-location of the box.

G. Feature vectors

The feature vectors are extracted every 3 frames as given in
Table I. Specifically, we calculate probability density functions
(PDFs) of the magnitude and angle from the motion vectors
and append them together. Each set of PDFs are separated by
the centroid coordinates.

H. Classification

We classify feature vectors for object presence. We inves-
tigated the use of KNN and the use of fully-connected deep
neural nets (DNN). Different classifiers were considered as
described in the results.

Writing Typing Talking
Object
Check

40<area<2000px
and aspect ratio
>1.2 or <0.5

200<area<8000px
and Has 3+
corners

area>1000px
and0.5≥aspect
ratio≥1.5

Context
Check 1

Pencil within ta-
ble region

Keyboard
detected on
table

Face is detected

Context
Check 2

Pencil near a
piece of paper

Hands inside
keyboard
bounding box

Bottom part of
face has motion

KNN
Used

Yes Yes Color Only

TABLE I: Context Conditions for Object Recognition.

143

Fig. 6: Talking classifier example. In this example, the classi-
fier correctly identified the faces. Then, based on the extracted
motion vectors over the mouth area, a second classifier iden-
tified who is talking and who is not talking.

III. RESULTS

We summarize the dataset in Table II. To select the best
parameters for each method, we used nested cross-validation.
Within the training set, we perform five-fold randomized cross-
validation for optimal parameter selection. Final results are
then reported on a tenfold cross validation of the selected
model on a tenth of the database that was not seen during
the training phase.

For KNN, we optimize the hyperparameters of distance
and neighbors using ranges of K = 3 to K = 19, and
explore the use of both Euclidean and city-block distance for
determining the nearest neighbor. Additionally, we explore the
use of feature scaling for motion vector analysis. Using simple
KNN classification, the method gave accuracies of 72.6% for
writing, 71% for typing and 84.6% for talking.

Classification accuracy improved to 92.5% (writing), 82.5%
(typing) and 99.7% (talking) with the use of trained Deep
Neural Network classifiers. We carefully document the optimal
DNN architectures in Table III. We note that the optimal KNN
classifiers were significantly less accurate than DNN.

From the results, it is clear that the talking classifier per-
formed very well. An example of correct talking classification
is shown in Fig. 6. Similarly, at 92.47%, the accuracy for
the writing classifier also worked well. The accuracy of the
typing classifier was lower at 82.52%. Overall, the use of
multiple classifiers provided for careful selection of the can-
didate activity regions. Careful selection of color models with
added KNN classification for object detection greatly increase

Talking Typing Writing
No. of Features 1755 1050 620
No. of Videos 14 14 15
FPS 60 26-60 24-60
Duration (in Seconds) 5-16 5-24 1-39

TABLE II: Dataset information for the final training dataset.

Talking Typing Writing
Accuracy 99.72% 82.52% 92.47%
Batch Size 100 100 200
Activation Model Relu Selu Selu
Neurons 100 50 70
Learning Rate 0.01 0.05 0.05
Hidden Layers 5 5 5
Regularization L1/L2

Max Norm
L1/L2
Max Norm

L1/L2
Max Norm

TABLE III: Human activity classification using Deep Neural
Networks. For each DNN classifier, we list the optimal net-
work parameters.

accuracy. The method must be altered to suit candidate objects
under observation to perform correctly.

IV. CONCLUSIONS

Overall, we have found that the proposed methodology
worked well in most of our test videos. We are currently
in the process of testing our methods in more challenging
environments and over significantly larger datasets. Careful
model selection for object detection greatly increases the
accuracy of the method. We believe that the combination
of context-based methods can be adapted to much wider
applications.

V. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1613637 and Grant No.
CNS-1422031.

REFERENCES

[1] A. Richard, H. Kuehne, and J. Gall, “Weakly supervised action learning
with rnn based fine-to-coarse modeling,” 2017.

[2] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[3] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 4694–4702.

[4] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang, “Real-time action
recognition with enhanced motion vector cnns,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2718–2726.

[5] L. Zhou, C. Xu, and J. J. Corso, “Procnets: Learning to segment
procedures in untrimmed and unconstrained videos,” arXiv preprint
arXiv:1703.09788, 2017.

[6] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning
of video representations using lstms,” in International Conference on
Machine Learning, 2015, pp. 843–852.

[7] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei, “Unsupervised
learning of long-term motion dynamics for videos,” 2017.

[8] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable computa-
tion of the forward and inverse discrete periodic radon transform,” IEEE
Transactions on Image Processing, vol. 25, no. 1, pp. 119–133.

[9] ——, “Fast 2d convolutions and cross-correlations using scalable archi-
tectures,” IEEE Transactions on Image Processing, vol. 26, no. 5, pp.
2230–2245.

144

