
Distributed Video Analysis for the Advancing Out
of School Learning in Mathematics and Engineering

Project
Cody W. Eilar1, Venkatesh Jatla1, Marios S. Pattichis1, Carlos LópezLeiva2, and Sylvia Celedón-Pattichis2

1 {ceilar, venkatesh369, pattichi}@unm.edu
image and video Processing and Communications Lab

Dept. of Electrical and Computer Engineering
University of New Mexico, United States.

2 {callopez, sceledon}@unm.edu
Dept. of Language, Literacy, and Sociocultural Studies

University of New Mexico, United States.

Abstract—The paper proposes an open-source, maintainable
system for detecting human activity in video datasets using
scalable hardware architectures. The system is validated by
detecting writing and typing activities that were collected as
part of the Advancing Out of School Learning in Mathematics
and Engineering (AOLME) project. The implementation of the
system using Amazon Web Services (AWS) is shown to be
both horizontally and vertically scalable. The software associated
with the system was designed to be robust so as to facilitate
reproducibility and extensibility for future research.

I. INTRODUCTION

There is strong interest in the development of distributed
video analysis systems that can be used to analyze large
video databases. Unfortunately, many methods developed for
big data are not directly applicable to processing vast video
databases. The paper is focused on the development of a
prototype system for processing videos to understand how
middle-school students from underrepresented groups learn
how to program.

We begin by introducing the video analysis problem. We
will concentrate on two activities as depicted in Fig. 1. Our
goal is to determine whether a student is writing, typing, or not
doing any of these activities. The problem can be complicated
by other activities as depicted in Fig. 1(d). In any case, in this
prototype system, our focus will be on developing a scalable
system as opposed to finalizing the video analysis components.
Currently, videos are manually analyzed [1]. The process is
time-consuming, laborious, and vulnerable to human error.

The paper describes an extension of our prior research
focused on the development AM-FM representations for im-
age analysis [2], [3] and the development of dynamically
reconfigurable architectures [4], [5], [6]. Instead of working
on specialized methods and dedicated hardware methods, our
focus in this paper is to develop scalable methods that can
be applicable to thousands of hours of videos that will be
generated as a part of the Advancing Out of School Learning in
Mathematics and Engineering (AOLME) project. We focus on

(a) (b)

(c) (d)

Fig. 1. Video activity detection problem. (a) No typing or writing activity. (b)
Typing. (c) Writing. (d) Difficult hand communication example that is neither
writing or typing.

methods that reduce feature sets from Gigabytes to Kilobytes,
and developing architectures that should scale to dozens or
thousands of compute nodes.

More generally, human activity classification poses signif-
icant computational and methodological challenges. Typical
features used for human activity recognition include the use of
edge trajectories, optical flow algorithms, Fisher Vectors, and
Gaussian mixture models [7], [8], [9]. Classification methods
are commonly implemented using Linear SVM and deep
learning techniques. Prior work in scaling resources on the
cloud in order to minimize cost and maximize performance
is discussed in [10], [11]. In this paper, we focus on the
development of a system that is both horizontally (across
nodes) and vertically scalable (within a node).

The rest of the paper is organized as follows. The method-
ology is described in section II. Results are given in section
III. Concluding remarks are given in section IV.

II. METHODS

A. Architecture Overview

Our system builds upon AWS to create an easy-to-maintain
and easy-to-scale video processing system. We use S3 storage



to put small video clips that have been extracted from our
AOLME dataset. These clips are made available to all process-
ing nodes. The processing nodes communicate with the master
node using Amazon’s simple queue service (SQS). Figure 2
illustrates the basic distributed system design.

From Figure 2 we see that the first step is to upload the
videos to S3. We keep the videos very small to support larger
number of compute nodes and minimize latency of the overall
system. On the other hand, large videos will result in a much
smaller number of compute nodes that will require significant
more processing and hence result in larger latencies. As we
shall show in the results section, processing time scales with
the size of the video. The next step is to place a message
on the SQS queue specifying which video to process next.
During the training phase, we also place the classification of
each video segment. For our prototype system, we manually
place messages on the queue so that we can control the flow.
For a production system, we would have the S3 bucket notify
the SQS queue that a new video was uploaded and is ready for
processing. The third step is the processing step. In our setup,
we create 20 Elastic Compute Cloud (EC2) instances running
our feature extractor application. Each one of these instances
polls the SQS queue waiting for a message to arrive. As soon
as one does, it downloads the appropriate video from the S3
bucket, processes the video, and then places the results on
another SQS queue. At this point, the master node is polling
the results queue and collecting the results into a csv file. The
csv file represents the extracted features that will be used for
training the classifier. In what follows, we provide more details
for each step of the system and also explain the individual
video analysis components.

B. Master Node Configuration

The master node in our system is responsible for sending
out jobs to process and then coalescing the results from the
calculations performed by the slave nodes. The first job is
to put messages on the SQS queue with a universal resource
identifier (URI) that can easily be ingested by the slave nodes
to download video segments. It’s second job is to then poll a
results queue for all the videos that were sent to be processed
in the first job. The results queue contains all the features
that have been extracted by the slave nodes. When the master
node has asserted that all of the videos have been processed, it
places the results in a comma separated value file for training
the classifier.

C. Slave Node Configuration

Each slave node polls on a single queue. Once a message
is received, the slave downloads the small S3 video segment,
processes it using our feature extraction technique, puts the
results on a queue that it has discovered on the incoming
message, deletes the video locally and then begins polling on
the queue again. We are able to configure our slave nodes
easily using a combination of Amazon’s Elastic Container
Service, ECS, and Docker to distribute the software to as many

nodes as we desire. We can also scale the number of nodes
dynamically as more videos arrive on the queue.

D. Vertical Scalability
For vertical scalability, we want to support the use of

custom architectures on FPGAs and effective implementations
on GPUs. To do so, we have developed our software to
take advantage of OpenCV’s transparent API known as TAPI.
The transparent API is an enabling technology to be able to
seamlessly switch between GPU, CPU and or any hardware
technologies without the software programmer having to select
one at compile time or at run time explicitly. TAPI uses Open
Computing Language (OpenCL) as its underlying technology
to achieve significant improvements over its base algorithm
suite. This fundamental technology allows the programmer
to write software for a variety of hardware implementations
without being burdened with implementing the algorithms
by hand. Since Amazon offers a variety of node types with
their service, beyond the standard horizontal scalability of
the cloud, our approach supports the use of GPUs and field
programmable gate arrays (FPGAs) at each slave node.

E. Distributed Feature Extraction and Classification
Feature extraction is done by the slave nodes using OpenCV

leveraging the transparent API. The basic approach is to
compute histograms of optical flow features and use SVM
for classification.

The basic steps are as follows:
1) Decode video segment and load it into memory.
2) Calculate optical flow between two frames (either using

Farneback or Lucas-Kanade methods).
3) Eliminate optical flow vectors that are less than 25% of

the maximum magnitude.
4) Compute cumulative density functions (CDFs) using 25

bins for (i) X and Y centroids of connected motion
vector blobs, (ii) the orientations of each blob, (iii)
optical flow motion estimates in the X and Y directions,
and magnitudes.

5) When all frames in the video have been calculated, place
results into a comma separated value list for each video
segment.

Here, after some initial testing, we settled for Farnenback’s
method for computing the optical flow vectors. As a result of
feature extraction, we have a dramatic reduction of the input
space from gigabytes down to only a few kilobytes.

Classification was much simpler than feature extraction.
It required significantly fewer resources and was performed
on the master node after collecting the features from each
video. Initially, we performed feature selection using the
Wilcoxon ranksum test. Then, the features that were found
to be statistically significant were used with support vector
machines.

III. RESULTS & DISCUSSION

A. The AOLME Dataset
The AOLME dataset is a large repository of over 900 hours

of video recordings of students. The videos contain students



Fig. 2. Dataflow of the distributed video system using AWS components in the cloud

interacting with facilitators, their peers and computers to write
code in Python on the Raspberry Pi. The videos were cropped
to isolate the video activities. The basic test database included
20 video segments of typing, no typing, writing, and no
writing. The basic idea was to test the detection of writing
and typing activities. However, in future work, to support
quantitative analysis, we will need to develop methods that:
(i) detect and distinguish among multiple activities, (ii) detect
the beginning and ending of each activity, and (iii) associate
each activity with a particular student or group of students.

B. Classification Results

We present two sets of results. First, for typing activity
detection, we performed leave-one-out cross-validation on 40
video segments (20 typing versus 20 no-typing examples).
Second, for writing activity detection, we performed leave-
one-out cross-validation on another 40 video segments (20
writing versus 20 non-writing examples).

For typing classification, the system performed very well.
Overall, we have a classification accuracy of 90%. Based on
the leave-one-out results, we have correct classification of 19
out of the 20 typing videos and 17 out of the 20 no-typing
videos.

The same system gave less impressive results on writing
versus no-writing activities. Overall, we have a classification
accuracy of only 65%. SVM correctly classified 18 out of the
20 writing videos but mis-classified 11 no writing videos as
writing. Apparently, hand gestures were incorrectly classified
as writing activities.

It is clear that there is a need to further develop both
the feature extraction and the classifier for more complicated
human activity detection. Yet, the focus of the current paper is
on developing a scalable approach as we shall describe next.

C. Proof of Scalability

We perform two experiments to demonstrate horizontal
and vertical scalability. For horizontal scalability, we consider
speedup as a function of the number of nodes. For vertical
scalability, we consider execution time as a function of the size
of the video in different hardware platforms. Furthermore, we
have found that keeping the videos under 2MB gave optimal
results. We also report bandwidth results.

In order to show that our system is horizontally scalable,
we record the time it takes for the cluster to perform certain
repetitive tasks. For the first experiment, we have the cluster
operate using only a single EC2 instance, and then scale the
experiment by one instance and compare how long it takes
to perform feature extraction from 10 2.1MB videos. For
this experiment, we used Amazon’s t2.micro instance which
contains 1 virtual CPU running on a high frequency Intel
Xeon processor with turbo up to 3.3GHz and contains 1GB of
memory. The results from this experiment are shown in Figure
III-C.

For 10 videos, we have ideal speedups for 2, 5, and 10
nodes. The ideal speedups are plotted using a green line in Fig.
III-C. On the other hand, we show linear speedup using a red
line in Fig. III-C. To see if the expected level of performance
has been reached, we divide execution times by the time it



Fig. 3. Speedup as a function of the number of EC2 nodes. For this
experiment, we have a total of 10 video segments of the same size (2.1MB).

takes to execute on a single node. From the results, it is clear
that the measured speedups follow the ideal speedups with
nearly ideal speedups for 2, 5, and 10 nodes. The speedup
anomalies of Fig. III-C can be attributed to measurement
variations due to possible variations in the compute nodes.

For vertical scalability, we considered different hardware
platforms. We present the results in Fig. III-C. For the figure,
we compare execution times for t2.micro instances against a
MacBook Pro 15. The MacBook Pro had an Intel Core i7
clocked at 2.7 GHz, 16GB of RAM, and an AMD Radeon
R9 M370X GPU with 2048 GB of memory. For this test, the
TAPI programming model was used to automatically detect
the GPU and compute the optical flow on the GPU. From the
results, we cannot see execution time differences between one
and ten t2.micro instances for this logarithmic scale plot. On
the other hand, the GPU of the MacBook Pro performed faster
but still followed the trend as function of video size.

Fig. 4. Comparison of the time it takes for a single node to process 1 video
vs the time it takes a cluster to process 10 videos. Videos vary in size to
test the efficacy of choosing to send smaller vs larger videos to the cluster.
A single t2.mirco instance was included to show that a single instance takes
just as long as 10 instances.

Using several small experiments, we were able to isolate

the speed of how quickly we could upload and download
video segments in S3. We validated that we could achieve
approximately 37 MB/s for both uploading and download
videos.

D. Discussion

In the previous sections we showed that we can accurately
detect typing in small video segments and demonstrated
horizontal and vertical scalability. In order to achieve this,
we performed feature extraction on the slave nodes and left
classification to the master node. Alternatively, instead of the
master node, classification could have been done on a client
node. Here, we note that classification is much faster since it
works with a significantly reduced feature set.

Figure III-C demonstrated horizontal scalability for at least
10 nodes. Based on the results, there is no reason to believe
that this system would not scale to several hundred nodes.
Nevertheless, it is possible that some minor issues may arise
in achieving higher orders of scalability.

To maintain perspective, we note video classification re-
quires a few milliseconds once the system has been trained.
Also, for larger datasets that use a sufficient number of nodes
so as to process no more than 10 2.1 MB video segments per
slave node, the total processing time should still be completed
within a few minutes.

IV. CONCLUSION

We presented a scalable architecture for human activity
classification in video databases. The proposed method is
both horizontally and vertically scalable. Horizontal scala-
bility is achieved by cloud technologies. Vertical scalability
is based on the use of OpenCV libraries that allow for
easy switching between CPU and GPU implementations.
The results showed that the system performed very well
in detecting typing activities. Feature extraction reduced the
original input video data sizes to just a few kilobytes. Because
the output feature space is quite small compared with the
original size of the videos input into the system, training
and testing can be done very rapidly and in turn automatic
classification can be done once the system has been trained
at near real-time rates. The source code is available at
https://github.com/AcidLeroy/OpticalFlow.

V. ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation under NSF AWD CNS-1422031
and NSF AWD 1613637.

REFERENCES

[1] C. LopezLevia, S. Celedon-Pattichis, and M. Pattichis, “Integrating
mathematics, engineering and technology through mathematics mod-
eling and video representations,” in 13th International Congress on
Mathematical Education, Hamburg, Germany, 2016.

[2] C. Carranza, V. Murray, M. Pattichis, and S. Barriga, “Multiscale
am-fm decompositions with gpu acceleration for diabetic retinopathy
screening,” in IEEE Southwest Symposium on Image Analysis and
Interpretation (SSIAI), April 2012, pp. 121–124.



[3] C. Loizou, V. Murray, M. Pattichis, M. Pantziaris, and C. Pattichis, “Mul-
tiscale amplitude-modulation frequency-modulation (am-fm) analysis of
ultrasound images of the intima and media layers of the carotid artery,”
IEEE Transactions on Information Technology in Biomedicine, vol. 15,
no. 2, pp. 178–188, March 2011.

[4] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable com-
putation of the forward and inverse discrete periodic radon transform,”
IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 119–133,
Jan 2016.

[5] D. Llamocca and M. Pattichis, “Dynamic energy, performance, and
accuracy optimization and management using automatically generated
constraints for separable 2d fir filtering for digital video processing,”
ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 4, pp. 31:1–31:30,
dec 2014.

[6] Y. Jiang and M. Pattichis, “A dynamically reconfigurable architecture
system for time-varying image constraints (drastic) for motion jpeg,”
Journal of Real-Time Image Processing, pp. 1–17, 2014.

[7] X. Wang and C. Qi, “Action recognition using edge trajectories and
motion acceleration descriptor,” Machine Vision and Applications, pp.
1–15, 2016.

[8] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework
for video segmentation and recognition,” in 2016 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV). IEEE, 2016, pp.
1–8.

[9] J. Cai, J. Yu, F. Imai, and Q. Tian, “Towards temporal adaptive
representation for video action recognition,” in 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, 2016, pp. 4155–4159.

[10] A. S. Kaseb, A. Mohan, and Y.-H. Lu, “Cloud resource management for
image and video analysis of big data from network cameras,” in 2015
International Conference on Cloud Computing and Big Data (CCBD).
IEEE, 2015, pp. 287–294.

[11] Y. Wang, W.-T. Chen, H. Wu, A. Kokaram, and J. Schaeffer, “A cloud-
based large-scale distributed video analysis system,” in 2016 IEEE
International Conference on Image Processing (ICIP). IEEE, 2016,
pp. 1499–1503.


