
Fast and Scalable 2D Convolutions and
Cross-correlations for Processing Image Databases

and Videos on CPUs
Cesar Carranza∗, Daniel Llamocca† and Marios Pattichis‡

∗Sección Electricidad y Electrónica, Departamento de Ingenierı́a
Pontificia Universidad Católica del Perú, Lima-32, Perú. Email: acarran@pucp.edu.pe

†Electrical and Computer Engineering Department
Oakland University, Rochester, MI, USA. Email: llamocca@oakland.edu

‡Department of Electrical and Computer Engineering, and
Center for Collaborative Research and Community Engagement, College of Education

The University of New Mexico, Albuquerque, NM, USA. Email: pattichi@unm.edu

Abstract—The dominant use of Convolutional Neural Networks
(CNNs) in several image and video analysis tasks necessitates
a careful re-evaluation of the underlying software libraries for
computing them for large-scale image and video databases. We
focus our attention on developing methods that can be applied
to large image databases or videos of large image sizes.

We develop a method that maximizes throughput through the
use of vector-based memory I/O and optimized 2D FFT libraries
that run on all available physical cores. We also show how to
decompose arbitrarily large images into smaller, optimal blocks
that can be effectively processed through the use of overlap-and-
add. Our approach outperforms Tensorflow for 5×5 kernels and
significantly outperforms Tensorflow for 11× 11 kernels.

Keywords-Convolution, Parallel Processing, CPU, SIMD,
MIMD, Image Processing.

I. INTRODUCTION

Convolutions and cross-correlations dominate image pro-
cessing operations. In implementing convolutional neural net-
works (CNNs), it is estimated that the computations associated
with the convolutional layers account for about 90% of the
total computations [1]. For neural-network training on large
image databases or digital videos, there is clearly a need to
compute 2D convolutions and cross-correlations efficiently.
Clearly though, several image and video processing operations
can benefit from fast convolutions and cross-correlations [2],
[3].

Over the years, there has been a large body of research
on how to compute 2D convolutions and cross-correlations
effectively. We provide a short summary and then motivate
the approach by the current paper. For small kernels, we have
the computation of fast convolution using a sliding window
[4], the use of separable convolutions [5], and the separable
approximation of non-separable kernels [6]. Naturally though,
the use of the transform-domain methods is needed for larger
kernels. Over sufficiently large kernels, we expect the 2D FFT-
based methods to dominate (e.g., [7]). Yet, the use of the
2D FFT requires complex-valued floating point arithmetic.

Alternatively, 2D convolutions and cross-correlations can be
computed very fast in hardware using the 2D Discrete Periodic
Radon Transform (DPRT) [6]. In [6], it was shown that 2D
convolutions of images and kernels of size (N/2)×(N/2) can
be computed in-parallel as fast as 6N +5n+17 clock cycles
(n = ceiling(log2(N))) based on the fast DPRT architecture
developed in [8].

Without access to custom hardware implementations, there
is still a great need for computing fast convolutions and cross-
correlations on modern CPUs. The obvious advantage of CPU
methods comes from the fact that they provide access to
relatively low-cost large-scale memory for training on large
image formats. In other words, while CPUs can readily access
32GB or 64GB of the main memory, large amounts of memory
remain prohibitively expensive for GPUs and FPGAs. Further-
more, it is important to recognize that we have advanced 2D
FFT libraries that take advantage of multiple physical cores,
SIMD instructions, as well as the conjugate-symmetry for real-
valued images and videos (e.g., [9], [10]). On the other hand,
for small convolution kernels, we also have the development
of the Tensorflow libraries that are widely used for training
deep learning systems [11].

We seek to develop a fast and scalable system that can be
used to compute convolutions and cross-correlations for large
image or video databases of arbitrarily large image sizes. More
specifically, we develop a system that can provide sustainable
high-throughput performance for reasonably large convolution
kernels and large images. Naturally, we need to deal with
moving large images effectively through the memory hierarchy
through the use of vector-based operations. To deal with the
need to process arbitrary sizes without causing cache misses,
we propose the use of an overlap-and-add approach that fits
optimal image blocks into the local memory. Furthermore,
for fast I/O, we use high-performance vector copy operations
that move image blocks that move images through local
memory. We also integrate our approach with existing high-



performance 2D FFT libaries to deliver fast throughputs. Our
method is general and avoids low-level hardware dependencies
by abstracting the necessary vector operations that should be
available on all candidate CPUs.

We compare our approach against the spatial-
convolution/cross-correlation methods available through
Tensorflow 2.0. Our results clearly demonstrate that we can
reach very high performance for arbitrary kernels and images,
significantly outperforming Tensorflow 2.0 for kernels that
are as small as 5× 5.

The rest of the paper is organized as follows. We provide a
general framework of our method in section II. We present
details on our implementation and comparative results in
section III. Conclusions and future work are given in section
IV.

II. METHODOLOGY

We summarize our approach into three sections. First, we
provide a description of optimal convolution using 2D FFTs
in section II-A. Second, we summarize overlap-and-add in
section II-B. Performance optimization is described in section
II-C.

A. Basic Convolution Block

We present a general framework for computing convolutions
in Fig. 1. The basic algorithm can be used for computing
convolutions of entire images or use overlap and add to
compute convolutions over large images with small kernels.
The algorithm computes f = g ∗ h using 2D FFTs. The
approach expands the standard use of 2D FFTs for computing
convolutions of image sequences of arbitrary sizes on modern
architectures. To support wider applications, we focus our
description on describing the basic architectural elements
needed to support higher performance.

We begin with memory allocation. Initially, as given in
lines 2-7, we need to pre-allocate memory for f, g, h,H . The
reserved memory size N×N needs to satisfy N ≥ P +Q−1
and allow for proper memory alignment. Thus, in practice, the
pre-allocated memory will need to be larger than the minimum
required for computing linear convolutions. Large image sizes
can lead to diminished performance since the pre-allocated
memory will no longer fit in the local cache. In our framework,
such issues are captured during the size optimization process
(in section II-C). For images (or image blocks), in addition
to size requirements and memory alignment, we also require
conversion from 8-bit fixed point to floating-point. Conversion,
zero-padding, and memory copy are performed using vector
operations as highlighted in line 8.

We assume the use of pre-optimized 2D FFT functions.
The underlying 2D forward and inverse FFTs are assumed
to: (i) use conjugate symmetry for real-valued images and
kernels, (ii) utilize the use of multiple cores by allowing us
to launch multiple threads, and (ii) use the underlying SIMD
architecture within each thread for optimized computation. We
also assume vector operations for multiplying the 2D FFTs.
After applying the inverse 2D FFT to the product, we use a

1: function FASTPARCONV(f, g, h,N , init)
. Computes full linear 2D convolution of g and h.
. Inputs:
. g: image (or image block) of size P × P .
. h: convolution kernel of size Q×Q.
. N : output size (N ≥ P +Q− 1).
. init: if True initializes variables in memory.
. Outputs:
. f : linear convolution output (f = g ∗ h).

2: if init then
3: Allocate f, g, h,H with optimal padding
4: and memory alignment.
5: h← VectorCopyZeroPad(h)
6: H ← FastParDFT (h, MaxPhysicalCores)
7: end if

. Convert 8-bit image (or image block) g into

. floating-point and move into pre-alloc. memory:
8: g ← ConvertZeroPadCopy (g)

9: G← FastParDFT (g, MaxPhysicalCores)
10: F ← VectorPoint2PointMult (G, H)
11: f ← FastParInvDFT (F , MaxPhysicalCores)

. Remove extra padding used for memory alignment:
12: f ← VectorCrop(f)
13: end function

Fig. 1: Basic algorithm for fast and parallel convolutions on
CPUs.

vector-crop operation to recover the result in its required size
(see line 12).

B. Overlap and Add Convolutions

The use of overlap-and-add allows us to use the 2D FFT for
large images. The basic idea is to decompose a large image
into a small number of blocks that can fit into cache memory
and also allow us to use smaller sized FFTs per block. For each
block, we compute 2D convolutions as discussed in section
II-A. We then combine the results from neighboring blocks to
produce the full 2D convolution results (e.g., see [12]).

C. Performance Optimization

The optimization method seeks to determine the optimal
image block size that provides the maximum throughput for
overlap-and-add. We refer to Fig. 2 for the optimization
algorithm.

Initially, we allocate random matrices for the image and
the kernel. Here, we are assuming that both the image and
the kernel are square for simplifying the description. Then,
we time the performance of different block sizes. Yet, since
the kernel is significantly smaller than the full image size
(n � N ), we ignore the overhead associated with adding



1: function OPTBLOCKSIZE(N,n)
. Algorithm computes image block size for
. optimal throughput.
. Inputs:
. N : input image frame size.
. n: kernel size. Assume that: n� N .
. Outputs:
. nopt: optimal block size.

. Use random values for optimization:
2: g ← GenRandomMatrix(N).
3: h← GenRandomMatrix(n).

. Search for the optimal block size:
4: pmax ← 0.
5: nmax ← NextPowerOf2(N + n− 1)
6: for i = n to nmax do
7: r(i)← Time (FastCpuConv(f, g, h, n+ i− 1))
8: p(i)← i2/r(i)
9: if pmax < p(i) then

10: nopt ← i
11: pmax ← p(i)
12: end if
13: end for
14: return nopt
15: end function

Fig. 2: Algorithm for computing the optimal image block size
for maximal throughput.

the contributions from the neighboring blocks (number of
additions is relatively small).

Our approach recognizes that modern 2D FFT algorithms
have been developed to cover several possible image sizes.
Beyond powers of two, we have libraries that can han-
dle sizes pi11 pi22 . . . pimm where p1, p2, . . . , pm are prime and
i1, i2, . . . , im are non-negative integers. In what follows, we
will assume that the underlying architecture supports p1 = 2
at-least. Then, we search for the optimal size between the
Kernel size, for minimum blocks of 1 pixel, and the next
available power of two (line 5), for the maximum possible
block size.

We define throughput as the rate of the number of processed
frame pixels per second, for a constant kernel size. We thus
seek to find the optimal block size nopt so that the throughput
function p(.) is maximized:

max
n≤i≤nmax

p(i).

III. IMPLEMENTATION AND RESULTS

A. Implementation Details

We test our proposed method on two CPUs: (i) a standard
mobile CPU: Intel i7-4710MQ@2.5GHz with 4 physical cores,
256KB for L1, 1MB for L2, 6MB for L3, and 16GB for
the main memory, and (ii) a server CPU: Intel Xeon E5-
2630v3@3.2GHz with 8 physical cores, 512K for L1, 2MB

for L2, 20MB for L3, and 64GB ofor the main memory. For
the software, we used a mix of optimized code (C/C++) based
on Intel Integrated performance libraries (IPP) and Intel Math
Kernel Libraries (MKL).

For memory management, we used the IPP [13] to
get support for SIMD-based vector operations. Each array
was aligned on a 64-byte boundary and their sizes were
based on the optimal block sizes described in section II-C.
Each image was converted to floating point and copied to
memory using ippiScale_8u32f_C1R. Cropping used
ippiCopy_32f_C1R while the additions for overlap and
add were performed using ippiAdd_32f_C1R.

For the actual 2D convolution/cross-correlation, we used the
MKL Fast Fourier Transform libraries [10], that we believe to
provide the best performance on Intel processors. To accelerate
the computation we use the Conjugate Even symmetry prop-
erty that speeds up the computation and reduces the memory
storage in half. Also, we used sizes that are composite numbers
of the form 2a × 3b × 5c, a, b, c ≥ 0. For the point to point
complex multiplications we used vcMul.

B. Results

We provide running time results in Fig. 3 and throughput
results in Fig. 4. We present results for blocks of sizes 1× 1
up to 4096× 4096.

In terms of the throughput, we note a rise from small
convolution kernels to larger kernels, followed by a drop in
performance. Upon careful examination, we determined that
performance drops are associated with 2D FFT algorithms
associated with sizes expressed as 3a5b where a, b ≥ 0. In
other words, the parallel 2D FFT library performs significantly
better for sizes of 2i3b5c with i > 0 versus sizes with i = 0.
For small sizes (N < 640), the total running time is dominated
by CPU I/O. In terms of the optimal block-size, we reach peak
performance for 512 × 512 blocks for i7 and 1024 × 1024
blocks for the Xeon. Beyond these sizes, cache size limitations
seem to impact the performance. Approximately, the Xeon is
performing at twice the speed of the i7. Here, we note that
the Xeon has ten physical cores versus four for the i7.

 

0

100

200

300

0 1000 2000 3000 4000R
u

n
n

in
g 

ti
m

e
 (

m
s)

 

Convolution size NxN 

Xeon_MT
i7_MT
Xeon_ST

Fig. 3: Running time for 2D-convolution/crosscorrelation.
Xeon MT refers to the use of a parallel FFT using a thread per
physical core. Xeon ST refers to the use of FFT running on
a single thread. Similarly, i7 MT refers to the use of multiple
threads on the i7.



 

0

200

400

600

0 1000 2000 3000 4000Th
ro

u
gh

p
u

t 
(M

p
ix

/s
) 

Convolution size NxN 

Xeon_MT
i7_MT
Xeon_ST

Fig. 4: Throughput results that correspond to the running times
given in Fig. 3.

C. Real-time video processing using overlap-and-add

We present comparative results for real-time video process-
ing in table I. In table I, we report the output convolved image
size in the left column and the convolution kernel size in the
right column (as the value of n for n × n kernels). In the
last three rows, we also report results with Tensorflow 2.0. In
Table I, we note that processing at 60 fps requires a maximum
of 16.7 ms per frame, while 30 fps requires only 33.3 ms per
frame.

From the results, it is clear that our proposed approach
outperforms Tensorflow for 5 × 5 kernels and significantly
outperforms Tensorflow for 11×11 kernels. In fact, Tensorflow
only does better when processing filterbanks of a minimum of
eight 3× 3 filters.

IV. CONCLUSIONS AND FUTURE WORK

We developed an optimal approach for computing convolu-
tions and cross-correlations of large databases of images that
can be arbitrarily large. Our approach maximimizes throughput
by breaking each image into optimal blocks and then using
overlap-and-add to compute the final result. Over each block,
we apply a parallelized 2D FFT that runs a thread for each
physical core. Our approach significantly outperforms Tensor-
flow 2.0 for kernels as small as 5× 5.

TABLE I: Running times (RT) for real-time time video
processing at 30 or 60 fps. For overlap-and-add, the optimal
block sizes were found to be: 1024 × 1024 for Xeon and
512 × 512 for i7. Each convolution kernel is of size n × n
where n is given in the last column. We use SB for processing
images using a single block and MB processing each image
using multiple blocks. TF refers to results using Tensor Flow
v2.0 [11].

Output Size RT (ms) Mpix/s CPU Notes

3240 × 3240 33.50 313.36 Xeon SB, n=11
2160 × 2160 30.92 150.89 i7 SB, n=11
2304 × 2304 15.68 338.55 Xeon SB, n=11
1600 × 1600 16.10 159.01 i7 SB, n=11
4066 × 2038 17.68 468.69 Xeon MB, 8 blocks,n=11
4016 × 2008 22.24 362.60 i7 MB, 32 Blocks,n=11
4096 × 2048 15.92 526.53 Xeon TF, n=3, 8 out channels
4096 × 2048 22.80 367.85 Xeon TF, n=5, 8 out channels
4096 × 2048 281.92 29.75 Xeon TF, n=11, 8 out channels
4096 × 2048 214.88 38.98 Xeon TF, n=3, 1 out channel

V. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1842220.

REFERENCES

[1] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[2] A. C. Bovik, The essential guide to image processing. Academic Press,
2009.

[3] ——, The essential guide to video processing. Academic Press, 2009.
[4] Y. Dong, Y. Dou, and J. Zhou, “Optimized generation of memory

structure in compiling window operations onto reconfigurable hard-
ware,” in International Workshop on Applied Reconfigurable Computing.
Springer, 2007, pp. 110–121.

[5] D. Mukherjee and S. Mukhopadhyay, “Fast hardware architecture for
2-d separable convolution operations,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 65, no. 12, pp. 2042–2046, 2018.

[6] C. Carranza, D. Llamocca, and M. Pattichis, “Fast 2d convolutions and
cross-correlations using scalable architectures,” IEEE Transactions on
Image Processing, vol. 26, no. 5, pp. 2230–2245, 2017.

[7] K. R. Rao, D. N. Kim, and J. J. Hwang, Fast Fourier transform-
algorithms and applications. Springer Science & Business Media,
2011.

[8] C. Carranza, D. Llamocca, and M. Pattichis, “Fast and scalable com-
putation of the forward and inverse discrete periodic radon transform,”
IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 119–133,
2015.

[9] M. Frigo and S. G. Johnson, “The design and implementation of fftw3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[10] “Developer Reference for Intel R© Math Kernel Library - C.” [Online].
Available: https://software.intel.com/en-us/mkl-developer-reference-c

[11] “Tensorflow website,” https://www.tensorflow.org/, accessed: 2019-12-
01.

[12] J. S. Lim, Two-dimensional signal and image processing. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[13] “Developer Reference for Intel R© Integrated Performance
Primitives (Intel R© IPP) 2019 - Volume 2: Im-
age Processing — Intel R© Software.” [Online]. Avail-
able: https://software.intel.com/en-us/download/developer-reference-for-
intel-integrated-performance-primitives-intel-ipp-2019-volume-2


