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Abstract—Research on video activity recognition has been pri-
marily focused on differentiating among many diverse activities
defined using short video clips. In this paper, we introduce
the problem of reliable video activity recognition over long
videos to quantify student participation in collaborative learning
environments (45 minutes to 2 hours).

Video activity recognition in collaborative learning environ-
ments contains several unique challenges. We introduce partici-
pation maps that identify how and when each student performs
each activity to quantify student participation. We present a
family of low-parameter 3D ConvNet architectures to detect
these activities. We then apply spatial clustering to identify each
participant and generate student participation maps using the
resulting detections.

We demonstrate the effectiveness by training over about 1,000
3-second samples of typing and writing and test our results over
ten video sessions of about 10 hours. In terms of activity detection,
our methods achieve 80% accuracy for writing and typing that
match the recognition performance of TSN, SlowFast, Slowonly,
and I3D trained over the same dataset while using 1200x to 1500x
fewer parameters. Beyond traditional video activity recognition
methods, our video activity participation maps identify how each
student participates within each group.

Index Terms—Action recognition, temporal modeling, 3D-
ConvNets, low-complexity neural networks

I. INTRODUCTION

The paper introduces new methods for long-term human
video activity quantification. Ultimately, our goal is to quantify
student participation by identifying video segments where a
student performs a particular activity (e.g., writing or typing).
Thus, our approach extends traditional video analysis methods,
which primarily focus on differentiating among short-term
activities.

We present examples of classroom video activities in Fig.
1. Here, we are only interested in the group activity that is
happening at the table that is closest to the camera. Then,
as shown in Fig. 1(a), we define structural clutter as activity
occurring in the background. Other challenges include multiple
activities (see Fig. 1(b)), concurrent activities (see Fig. 1(c)),
and activities associated with different students (see Fig. 1(d)).

Our proposed approach consists of two essential parts.
First, we use an object detection system to locate where
the video activity may be happening. Second, we apply a
video activity recognition system to classify the activity. For

general purpose object recognition, we consider the Faster R-
CNN [1]. For comparison to our proposed approach to video
activity recognition, we consider three alternative methods:
TSN [2], Slowfast & Slow-only [3], and I3D [4]. For TSN,
the video is divided into multiple segments, and the final score
is derived through a combination of three separate classifiers
based on RGB, frame differences, and optical flow with 24M
trainable parameters [2]. Slowfast & Slow-only [3] is built
to recognize slow and fast actions. For comparison purposes,
we will consider a version of Slowfast & Slow-only using
ResNet [5] with 32M trainable parameters. For I3D [4], we
consider the use of an inflated Inception Network [6] with
27M parameters.

We also provide a summary of recent related research on
classroom video analysis. In [7], the authors developed fast
methods for hand detection. In [8], [9], and [10], the authors
developed methods for person detection and talking detection.
In [11], the authors used video analysis methods to develop a
speech recognition system for English and Spanish.

Compared to previous approaches, the current paper is based
on the development of low-complexity systems. For low-
complexity, we consider the development of classifiers with
substantially smaller numbers of trainable parameters. As we
describe here, the approach is successful in the sense that we
reduce the number of trainable parameters by more than a
thousand times.

The rest of the paper is organized as follows. We describe
the method in section II. We provide results in section III. We
provide concluding remarks in section IV.

II. METHODOLOGY

We present the general system diagram in Fig. 2. As
described earlier, we process each video in two steps. First,
we use object detection to generate activity proposal regions.
Second, we use a classifier over each proposal region. The
results are used to generate activity maps. For this paper, we
only consider writing and typing activities.

For generating activity proposals, we only consider the case
for typing detection. To detect typing, we focus on keyboard
detection. To extend the results to writing, we will integrate
a method for hand detection that we are currently developing
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(c) Different activities performed at the same time.

(d) Keyboard movement from student to student.

Fig. 1: Classroom activity challenges.
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Fig. 2: General system diagram.

For video activity classification, we consider the use of 3D
ConvNets that was first introduced by [12]. Here, we build
a family of neural network architectures as shown in Fig. 3.
Each neural network is made of 3D-ConvNets as shown in
Fig. 3(a). The neural network architecture is shown in Fig.
3(b). We want to determine the optimal architecture based on
different depth levels.

III. RESULTS

We summarize the results in two sections. First, we describe
the dataset and the hardware used to evaluate the activity
detection systems in III-A. Second, we compare our low pa-
rameter dyadic architecture against the state-of-the-art systems
detecting typing and writing. For the comparisons, we measure
spatiotemporal accuracy for typing detection. We also provide
an example of a quantification map for summarizing typing
activity.

A. Dataset

A typical session in AOLME has 1920 x 1080 resolution
and 30 or 60 frames per second (FPS), and lasts around 1 hour

to 1.5 hours. Before labeling the activities, we transcode the
videos to 848 x 480 and 30 FPS, standardizing the resolution
and frame rate. We then process the transcoded video through
MATLAB video labeler, labeling typing and writing instances.
We use a spatially fixed bounding box to label an instance of
the activity. The videos are broken into 3-second segments for
further processing.

We maintain dataset diversity by taking video instances
across sessions from different groups over three years. We split
the dataset into training, validation, and testing at the session
level, ensuring that each set contains samples from a different
session. For typing, we used 2, 106 positive and 1, 992 negative
samples, 84% for training and 16% for validation. For writing,
we used 1,996 positive and 1,186 negative samples, 76%
for training and 24% for validation. Each video sample was
trimmed to 3-second duration as shown in Fig. 4.

B. Results for Writing and Typing

We summarize our activity recognition results in Table I
Our method performs better in typing recognition with far
fewer parameters and is only 3% less accurate in writing



detection with the lowest variation in performance (e.g., small-
est standard deviation). Due to the lower-parameter count,
our proposed model avoids overfitting and is expected to
generalize better. Furthermore, the low number of parameters
allows for implementations with low computational resources
and limited memory (= 350 MB). For training the model,
we use a Dell Precision 7920 with Intel Xeon 4208 CPU
@ 2.10GHz server and 128 GB DDR4 RAM. The system
used an NVIDIA RTX 5000 GPUs each having 16GB DDR6
memory with PyTorch. For the competitive methods, we used
the implementations provided in MMACTION?2 [13].

We use Faster RCNN [1] to propose regions for typing
detection. We then trim the proposed regions and classify them
using our activity classifier identifying typing. We process
complete sessions and evaluate performance every second.

Table II summarizes the results across 7 sessions. We can
see from the table that we are getting good accuracy in
identifying regions where there is no typing. On average, we
got a sensitivity of 0.58 for typing detection. We found that
most of the error is due to pauses during typing. To quantify
the detection, we also provide Intersection over Union (IoU)
scores. From the results, we can see that typing regions are
detected with high accuracy. We present examples in Fig. 5.
For the false positive exaniple, we had hand motion near the
keyboard that was mistakenly classified as typing. We also
provide an example of typing quantification in Fig. 6. From the
activity map, we can see that the method is good at detecting
long typing instances.

TABLE I: Summary of video activity classification results for
writing and typing. The table provides classification accura-
cies. The optimal classifier had d = 4.

Activity Number Saved Typing, Writing,
recognition of model size No-Typing No-Writing
system parameters in MB Mean, SD

13D 27M (1421x) 218 (1329x) 89.7,3.6  83.5,7.5
Slowfast (SF) | 34M (1789x) 269 (1640x) 89.0,4.3  84.2,75
Slow-only (SO) | 32M (1684x) 253 (1542x) 89.3, 4.1 79.7, 84
TSN 24M (1264x) 188 (1132x) 85.3,5.9  76.0, 11.5
3D-CNN (ours) [ 0.0190 (1x) 0.164 (Ix) 91.0,59 81.2, 44

TABLE II: Spatio-temporal performance of the proposed
method. The test data included seven complete video sessions
with a duration of 1 hour to 1.5 hours, collected over three
years. Temporal accuracy is calculated by comparing predicted
typing instances against ground truth for every second. Spatial
accuracy is estimated using IoU scores of temporal true
positive instances.

Temporal accuracy Spatial accuracy
Session Sens, Spec, Acc # TP median IoU
CIL1P-E, Mar 02 | 045, 0.83, 0.75 516 0.70
CIL1P-C, Apr 13 | 0.58, 0.82, 0.79 4575 0.71
CIL1P-C, Mar 30 | 0.37, 0.95, 0.94 39 0.80
C2LI1P-B, Feb 23 | 0.54, 0.88, 0.84 399 0.78
C2L1P-D, Mar 08 | 0.64, 0.66, 0.66 727 0.77
C3L1P-C, Apr 11 | 0.63, 0.64, 0.63 251 0.80
C2L1P-D, Mar 08 | 0.82, 0.52, 0.79 278 0.40
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Fig. 3: 3D-CNN architecture optimization. A family of ar-
chitectures is generated for depth d. At depth d, we have
24+1 3 x 3 x 3 kernels, followed by Batch Normalization,
ReLU, and 3D MaxPooling.

IV. CONCLUSIONS

The paper presented a low-parameter method for detecting
typing and writing instances in collaborative learning environ-
ments. Compared to alternative methods, our low-parameter
approach performed better for typing and was competitive
in writing detection (at about 3% less) while using 1200x
to 1500x fewer parameters. We also provided a complete
framework that summarizes typing over an entire session.
In future work, we will be working on a complete writing
quantification framework and improving our existing typing
framework.
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(a) Typing instances. (b) No-Typing instances.

(c) Writing instances. (d) No-Writing instances.

Fig. 4: Examples from 3-second video samples used for training, validation, and testing.

(a) TP with IoU of 0.87.

(b) FP caused due to a book having similar pattern as keyboard.

Fig. 5: Typing detection examples. True positives (TP) are denoted by green bounding boxes. False positives (FP) are denoted
by yellow bounding boxes.
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6: Typing activity map for a session (C1L1P-E, Mar 02).

In this plot, we compare our framework predictions (blue)
against ground truth (green).
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