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Abstract—The paper investigates the use of compressively
sensed images in interactive image classification. To speed-up the
classification process and avoid costly reconstruction, we consider
the use of a feed-forward neural network in a reduced complexity
image domain. The interactive image and video classification
systems have been used for real-time demonstrations that have
been effectively utilized in outreach activities for attracting
middle-school students to STEM.

Index Terms—Compressive Sensing, Neural Networks, Inter-
active Classification

I. INTRODUCTION

Compressive sensing theory allows for accurate image re-
construction even when sampling below the Nyquist rate.
While reconstruction algorithms have become better over
recent years, they can still preform poorly at low sampling
rates, and can be computationally expensive.

We consider the development of interactive image classifi-
cation using compressively sensed images without reconstruc-
tion. To develop effective systems, we require the development
of methods for fast training and classification.

To recognize the problem, we begin with the basic mathe-
matical formulation to simulate compressive sensing in soft-
ware. Let x denote the original input image and Φ denote
an independent identically distributed Gaussian measurement
matrix with zero-mean and unit standard deviation. In this
paper, we want to minimize the number of compressive
measurements y = Φx while maintaining strong classification
performance. Thus, our approach differs significantly from
[1], where the authors showed that the combination of pixel-
domain reconstruction using ΦTy with convolutional neural
networks can lead to good classification performance using
only 10% of the image’s pixels.

By eliminating the need for image reconstruction, we also
get a more-secure, random representation of the input. To
maximize effectiveness, the paper investigates classification
performance as a function of speed and the number of sensed
image features. The paper discusses applications for interactive
classification of handwritten digits and letters.

The proposed methods are demonstrated using images taken
from NIST Special 19 database of handwritten digit and letter
images [2], and ImageNet [3]. The results suggest that we can
maintain high classification accuracy using a small number

of features. The interactive image classification systems allow
for real-time demonstrations that have been effectively utilized
in outreach activities for attracting middle-school students to
STEM.

II. BACKGROUND

Similar to our use of artificial neural network classifiers,
Calderbank et al. [4] showed that it is possible to use SVM
classifiers in the compressed domain.

The authors showed that whenever data is represented in
the sparse domain, compressed sensing can preserve the learn-
ability of the problem while bypassing the computational curse
of dimensionality. Classification in the compressed domain
has also been demonstrated using the smashed-filter approach
[5]. The basic idea of the smashed-filter is to classify based
on cross-correlation with template signals. Here, we note
that we have the recent introduction of scalable hardware
implementations for computing 2D convolutions and cross-
correlations as discussed in [6], [7]

As pointed out by Lohit et al. [1], smash-filters approach
has several limitations and can be very inefficient.

Lohit et al. [1] proposed a CNN based framework to directly
classify compressive data, by allowing the CNN to extract
discriminative non-linear features. As mentioned earlier, our
approach differs significantly from [1] in that we also perform
the classification in the measurement space without requiring
image reconstruction. Furthermore, we also demonstrate real-
time interactive classification.

III. METHOD

A. Interactive Video Classification in Pixel-Space

The interactive video classification system is shown in Fig.
1. For this framework, the goal is to expand the approach
proposed by [1] to support fast training for compressively
sensed images in the pixel-space domain, i.e, ΦTy .

To support fast training times, we use the pre-trained CNN
”AlexNet” [8] that has been trained on regular images from
ImageNet. We replace the last three layers of the CNN with
two new layers to be trained for the current application and
one output layer with softmax outputs for each classification
category. The convergence of the training phase is verified
by testing the neural network using cross-validation. For the
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Fig. 1. Interactive video classification framework for compressively sensed images. In this application, a mobile phone is used to transmit the images to the
classifier.

Fig. 2. Interactive image classification framework for classifying digits and letters. Words are classified using spell checking.

interactive interface, we setup a wireless communications
system where real-time video is streamed via RTSP from a
mobile phone to a laptop that implements the trained classifier.

B. Interactive Image Classification in Random-Space

We present the basic classification framework in Fig. 2. The
basic approach is broken into six steps. In steps 1 to 5, we
investigate the performance of the classifier as a function of
the measurements. After that, we use the minimum number of
measurements in an interactive classifier.

The measurement matrix, Φ, consists of independent, iden-
tically distributed (iid) random numbers that are uniformly
distributed between 0 and 1. After the input images, x, are
multiplied by the measurement matrix, the outputs, y = Φx,
are sent to a feed-forward neural network with a three-layer
architecture. The first layer is the input layer, where we supply
the compressively sensed images. In the second layer we use
a fixed number of 200 neurons for implementing the hidden
layer. The last layer is the output layer which consists of
the same number of output nodes as the number of possible
classes.

After training the neural network, we also develop an inter-
active demonstration system. This system allows the students
to draw an input image using an interactive image editor
by clicking on different pixels. The compressively sensed
image is then generated by multiplying by the measurement
matrix. Demonstrating the lack of correlation to the original

input. Lastly, the compressive image is classified by the neural
network, and the results are displayed to the student.

If the student enters more than one letter, the collection of
all the recognized letters are fed and corrected by a spell-
checking application [9].

IV. RESULTS

For real-time video classification, we consider the classifica-
tion of keyboards and human faces using pixel-space domain
images. As shown in Fig. 3, for 123 keyboard images and
153 face images, the use of transfer-learning from regular to
compressively-sensed images worked very well. The overall,
cross-validated classification accuracy was 93.5%.

Fig. 3. Confusion Matrix for real-time video classification of pixel space
images of faces and keyboards. Overall classification accuracy: 93.5%.
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Fig. 4. Classification accuracy and execution time as a function of the number
of compressive-sensing measurements. For comparison purposes, we present
the number of measurements in the form of N×N where N = 128 refers to
the original input image size. Measurements were taken on a Precision Tower
5810 using an Intel Xeon processor.

To test the new approach of classifying in the random-space
domain, we use 4,583 images of each digit (0-9) for the digit
classifier and 719 images of each letter selected randomly
lower and upper case (a-z and A-Z) for the letter classifier.

In Fig. 4, for handwritten digit classification, we present
the overall classification accuracy and total execution time as a
function of the number of compressive-sensed image measure-
ments. From Fig. 4, it can be seen that classification accuracy
remains above 90% until the number of measurements drops
below about 1% of the total pixels, as seen in the 16x16 case.
The resulting confusing matrix for this case is shown in Fig.
5, with a classification accuracy of 90.3%. Compared to the
classification accuracy of using 100% of available pixels, we
only miss an additional 2.6%.

Fig. 5. Confusion matrix for digits in the random space domain, being
classified by a NN. Overall classification accuracy: 92.9%.

The same system setup was also tested for interactive word
classification. For individual letters, by keeping all measure-
ments, the overall accuracy reached 66% as shown in Fig. 6.
Thankfully, in interactive classification, the spell-checking step
was able to correct most mis-classifications.

We present interactive image classification results in Fig.
7. As we can see from Fig. 7(c) and (d), the input images
cannot be identified from the compressively sensed images.
Furthermore, in Fig. 7(d), variations in the input image can
cause uncertainty in the final classification.

The use of the interactive classifiers was also used in STEM
outreach. The middle-school students enjoyed experimenting
with different input images and the real-time video streaming
application.

Fig. 6. Confusion Matrix for classifying alphabet letters in the random space
domain. Overall classification accuracy: 66.0%.

V. CONCLUSION

Overall, it is clear that the use of compressively-sensed
image features can lead to very fast interactive classifiers.

For interactive video image classification, we demonstrated
the successful use of transfer-learning a CNN trained for
regular images (ImageNet) to images in the pixel-space do-
main. In particular, training and convergence was possible for
the modified CNN architecture in a laptop with an overall
classification accuracy of 93.5% for classifying keyboards
versus faces.

In our digit classification example, with just 6% of the
number of the original image pixels, we were able to achieve
an excellent classification accuracy of 90.3%. Furthermore,
word classification was used to improve the accuracy of the
individual letter classifiers.
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(a) Face classification (b) Keyboards classification (c) Digit classification (d) Letter classification

Fig. 7. Interactive image classification examples.
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