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Rogers F. Silva , Member, IEEE, Sergey M. Plis , Tülay Adalı , Fellow, IEEE,

Marios S. Pattichis , Senior Member, IEEE, and Vince D. Calhoun , Fellow, IEEE

Abstract— Unsupervised latent variable models—blind source
separation (BSS) especially—enjoy a strong reputation for their
interpretability. But they seldom combine the rich diversity of
information available in multiple datasets, even though multi-
datasets yield insightful joint solutions otherwise unavailable in
isolation. We present a direct, principled approach to multi-
dataset combination that takes advantage of multidimensional
subspace structures. In turn, we extend BSS models to capture
the underlying modes of shared and unique variability across
and within datasets. Our approach leverages joint information
from heterogeneous datasets in a flexible and synergistic fashion.
We call this method multidataset independent subspace analysis
(MISA). Methodological innovations exploiting the Kotz distribu-
tion for subspace modeling, in conjunction with a novel combina-
torial optimization for evasion of local minima, enable MISA to
produce a robust generalization of independent component analy-
sis (ICA), independent vector analysis (IVA), and independent
subspace analysis (ISA) in a single unified model. We highlight
the utility of MISA for multimodal information fusion, including
sample-poor regimes (N = 600) and low signal-to-noise ratio,
promoting novel applications in both unimodal and multimodal
brain imaging data.

Index Terms— BSS, MISA, multidataset, fusion, ICA, ISA,
IVA, subspace, unimodal, multimodality, multiset data analysis,
unify.

I. INTRODUCTION

BLIND source separation (BSS) [1], [2] is the recov-
ery of unknown latent source signals from their

observed mixtures without knowing the mixing process. It
is widely adopted in signal, image, and video processing
areas, including chemometrics [3], speech [4], multispec-
tral imaging [5], [6], medical imaging [7], [8], and video
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Fig. 1. Subspace identification from multidatasets with MISA. We con-
sider the general case of M datasets/modalities (xm) jointly decomposed,
without loss of generality, into C sources ymi each, via linear transformations
Wm. Here, each xm would be either audio or video streams, indicating
fusion via the joint analysis of all datasets. Sources are combined into dk-
dimensional subspaces yk and all-order statistics is utilized to gauge their
associations and pursue subspace independence. Only a single correspondence
“axis” is required, e.g., time, meaning there is a video frame for each
audio sample in audio/video (a/v) data fusion, although the method is not
limited to a/v, fusion, nor temporal synchrony specifically. Subspaces establish
links among groups of sources across different datasets/modalities. There-
fore, multidataset independent subspace analysis (MISA) blindly recovers
hidden linked features of flexible dimensionality from multiple datasets and
modalities. Code is available at https://github.com/rsilva8/MISA.

processing [9], [10]. The “blind” property (unknown source
and mixing) is highly effective, especially in applications
lacking a precise model of the measured system(s) and
with data confounded by noise of unknown or variable
characteristics.

In our recent review [1], we introduced a unified multi-
dataset multidiversity multidimensional framework for sub-
space modeling. It provided a fresh perspective on BSS,
identifying both single-dataset multidimensional (SDM) and
multidataset unidimensional (MDU) research as subproblems,
and outlining a path to reconcile them. In turn, a new class
of multidataset multidimensional (MDM) problems became
apparent, emphasizing the potential benefits of general latent
subspace correspondence across datasets.

Models designed for MDM problems are extremely flexible.
A single joint model not only encodes higher complexity
through features of flexible dimensionality (the subspaces
yk) but also accommodates arbitrary links among these fea-
tures over multiple datasets/modalities (xm). To illustrate
(Fig. 1), we consider a multivariate information functional
I(y) that operates simultaneously on the joint probability
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density function (pdf) of all subspaces p(yk). It captures the
association modes underlying multidatasets while adaptively
learning multiple linear transformations Wm (dashed lines).
When datasets represent modalities, this directly leverages
multimodal joint information and lets it guide the decomposi-
tions naturally. Combining different multimodal views of the
same system, this generalized approach to multimodal fusion
offers broader, unique insights into its underlying properties
and behavior.

Aiming at generality, we pursue statistical independence
among subspaces yk to achieve joint BSS for MDM. Initial
investigation of this approach [11]–[13] indicated the presence
of critical issues. These included premature convergence to
local minima, rigid hard-coded subspace distribution parame-
ters, and a restricted orthogonal regularization for Wm.

Here, we propose a vastly improved expansion to address
these issues. We use combinatorial optimization to search
over subspace configurations P (Fig. 2) and escape local
minima, all-order statistics (i.e., both second- and higher-order
statistics—SOS and HOS, respectively) to model p(yk) via
the more general Kotz distribution [14], and a scale-controlled
formulation for numerical stability. We also generalize usage
to non-orthogonal Wm sans data reduction. We refer to this
robust, performant approach simply as multidataset indepen-
dent subspace analysis (MISA) (Fig. 1). In the formulation
below, p (y) represents the joint pdf of all sources, and p(yk)
the pdf of the k-th subspace.

Let I(y) be the Kullback-Leibler (KL) divergence, an infor-
mation functional useful for comparing two pdfs p(y) and
q(y), where, here, q (y) =

∏K
k=1 p(yk) is the desired factor

pdf of p(y). Then let h(·) be the joint differential entropy,
h(z) = −E [ln p(z)], for a random vector z with pdf p(z),
E [·] being the expected value operator, and let Pk be the
subset of P assigning specific sources into subspace k.
Consequently,

I(y) = −h(y) +
K∑

k=1

h(yk)

= −h(Wx) +
K∑

k=1

h(PkWx). (1)

We propose to estimate a collection of linear transformations
y = Wx simultaneously from all datasets by solving:

min
W,P

I(y), (2)

for any W, subspace assignments P, and data streams x.
This convenient formulation, which gives mutual information
(MI) when the random vector y is two-dimensional, only
attains its lower bound of I(y) = 0 when p(y) = q(y),
implying that the identified subspaces are indeed statistically
independent. A sketch of the convergence proof for this
approach is provided as supplemental material.

With MISA, direct study of the interactions and associations
among multiple datasets and modalities becomes feasible,
in a truly synergistic way. Consequently, joint sources yk

emerge naturally as a direct result of the shared variability esti-
mated from all-order statistical dependences among datasets.

TABLE I

FREQUENTLY USED ACRONYMS

Breaking from the limited, rigid paradigm of MDU models
dominating current multimodal research [15, Ch. 8], it allows
general subspace associations and even absent features in spe-
cific datasets. As a unifying toolkit, MISA can execute many
general unconventional BSS tasks as well as classical special
cases such as independent component analysis (ICA) [16],
independent subspace analysis (ISA) [17], and independent
vector analysis (IVA) [18]. Also, it outperforms several algo-
rithms in each of these tasks, successfully achieving general-
ized subspace identification from multidatasets. This uniform
implementation yields user accessibility and intuition thanks to
the umbrella formulation and methodologies introduced here.

In the current paper, we demonstrate that MISA (our pro-
posed method) outperforms algorithms such as Infomax [19],
[20], Laplace IVA (IVA-L) [18], and Gaussian-Laplace IVA
(IVA-GL) [21] in challenging experiments and realistic scenar-
ios satisfying the requisites outlined in [22]. MISA’s remark-
able performance and stability in certain extremely noisy
cases (signal-to-noise ratio (SNR) of 0.0043dB) highlights the
benefit of careful multidataset subspace dependence modeling
with all-order statistics. Likewise, MISA with greedy permu-
tations (MISA-GP) clearly outperforms joint blind diagonal-
ization with SOS (JBD-SOS) [23] and EST_ISA [24] even
at low SNR levels (SNR of 3dB). This shows the benefit
of combinatorial optimization to escape local minima in
subspace analyses.

Hybrid data results on representative biomedical imaging
features and realistic data dimensionality further support the
high estimation quality and flexibility of MISA. These include
novel applications in high-temporal-resolution functional mag-
netic resonance imaging (MRI), and multimodal fusion of
heterogeneous neurobiological images and signals. The latter
also demonstrates feasibility of data fusion even at low SNR
and sample-poor regimes (number of observations N = 600),
with examples involving functional, structural, and diffusion
MRI, as well as electroencephalography (EEG) data. Subspace
analysis in its general MDM form has not yet been conducted
in a multimodal fusion setting. To the best of our knowledge,
MISA is the only approach which can directly investigate
this use-case using all-order statistics. Original code and data
are available at https://github.com/rsilva8/MISA, with exam-
ples to accompany the descriptions in supplemental material
(Sections II-B and II-D therein), and detailed derivation of the
gradients.

In the following, Section II states the general MDM prob-
lem. Section III puts our contributions in context with related
works, followed by our methodology description in Section IV.
Finally, Sections V and VI present our results and conclusions,
respectively. Frequently used acronyms are listed in Table I.
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Fig. 2. General architecture of linear MDM problems. The lower layer
corresponds to one Vm × 1 observation of each input data stream xm.
The middle layer represents the Cm sources. The top layer establishes the
K subspaces yk , which are collections of statistically dependent sources
(indicated by same-colored connections), following the compositions laid out
in the assignment matrix P. This architecture suggests a natural hierarchy
among models [1], [15, Ch. 8] in accordance with the number of datasets
comprising x and the occurrence of multidimensional sources within any
single dataset. MDU and SDM problems include the simpler SDU case, and
the most general MDM problem contains all others as special cases.

II. BACKGROUND

The MDM problem can be formally stated as follows. Given
N observations of M ≥ 1 datasets, identify an unobservable
latent source random vector y =

[
y�

1 · · ·y�
M

]�
, with ym =

[ym1 · · · ymCm ]� (Cm sources per dataset), from an observed
random vector x =

[
x�

1 · · ·x�
M

]�
, with xm = [x1 · · ·xVm ]�

(Vm-dimensional datasets), generated via a mixture vector
function f (y,θ) with unknown parameters θ. The m-th Vm×
N data matrix containing N observations of xm along its
columns is denoted Xm, and the V̄ ×N matrix concatenating
all Xm is denoted simply as X (likewise for Y and Ym).
Both y and f (y,θ) have to be learned blindly, i.e., without
knowledge of either of them. For tractability, assume:

1) the number of latent sources Cm, which may differ in
each dataset, is known to the experimenter;

2) f (y,θ) = Ay is a linear transformation, with θ = A;
3) A is a V̄ × C̄ block diagonal matrix with M blocks,

describing a separable layout structure [1] representing
xm = Amym, m = 1 . . .M , where C̄ =

∑M
m=1 Cm,

V̄ =
∑M

m=1 Vm, each block Am is Vm × Cm, and Vm

is the intrinsic dimensionality of each dataset;
4) some latent sources ymi ∈ y are statistically related

to each other, and this dependence is undirected (non-
causal), occurring within and/or across datasets;

5) related sources establish dk-dimensional subspaces 1 yk,
k = 1 . . .K , with K and the subspace compositions laid
out by the experimenter in sparse assignment matrices
Pk ∈ {0, 1}dk×C̄ , such that P =

[
P�

1 · · ·P�
k · · ·P�

K

]�
is a permutation matrix;

6) subspaces do not relate to each other, i.e., either p (y) =∏K
k=1 p(yk) or the cross-correlations ρk,k′ = 0, k �= k′.

Under these assumptions, recovering sources y amounts to
finding a linear transformation W for the unmixing vector

1The subspace terminology stems from [17] in which the columns of A
corresponding to yk form a linear (sub)space.

TABLE II

KEY NOTATIONS

function y = Wx. This occurs when W = A−, the
pseudo-inverse of A, implying W is also block diagonal
and satisfies ym = Wmxm. The experimenter’s priors on
the subspace structure within/between one or more datasets,
plus the type of statistics describing within/between subspace
relation, determines how P is set and, thus, whether and how
the model simplifies to the classical special cases [1]. Our
focus will be on MDM models driven by statistical inde-
pendence among subspaces and dependence within subspaces,
namely MISA, in the case of an overdetermined system with
Vm ≥ Cm, without implying W is square via the typical
principal component analysis (PCA). Table II summarizes our
key notations.

In multimodal brain imaging research, various types of
data can be utilized. MRI scans (e.g., structural, diffusion,
functional, etc.) typically consist of 3D images, sometimes
with an extra dimension. EEGs record the temporal evolution
of scalp electric potentials, typically dozens of electrodes at
the same time. After collecting two or more such modalities
on the same subject, the information is often summarized to a
single 3D image and/or time series for each modality. These
summary features are obtained from multiple subjects and
jointly analyzed with data fusion. Usually, only in-brain signal
is considered from 3D images. Those in-brain voxels (volume
pixels) are stacked into a single 1D vector prior to fusion.
Other modalities, data preparation, and feature generation
approaches exist but will not be discussed in this work.

III. RELATED WORK

A. Applications

MDM problems permeate many fields and yet are largely
undeveloped. In multimodal fusion of heterogeneous data [25],
[26], robust identification of flexible joint features (yk) origi-
nating from all data modalities (xm) can yield one-of-a-kind
views into a system’s properties. This is a prominent direction
in mental health research for biomarker identification and
early diagnosis, with potential to convey new strategies for
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disease severity assessment and translation into personalized
treatments [1]. In classification, the association/dependence
inherent to multimodal features yk means that good separa-
bility in one dataset promotes features with similar property
in other datasets, and vice-versa.

The benefits of model flexibility are also notable in various
multiset analyses. In the case of multisubject unimodal data
(xm) [27]–[32], it would better preserve subject specificity. In
analyses that combine multi-site datasets (xm) from different
scanners/devices, it could naturally mitigate harmonization
issues [33], [34] since site/device-variability would seldom
explain multidataset associations. In sensor fusion [5], [25],
[35], [36], where noise characteristics can be similar if mul-
tiple sensors (xm) share the same environment, it would
allow better detection (and potential removal) of noise. For
hyperspectral imaging [37]–[39], hyperspectral features (yk)
of higher complexity could be identified in time-lapse studies.
For domain-adaptive image recognition [40]–[44], enhanced
common and unique representations (yk) could be identi-
fied across image domains (xm). For multi-view image and
video processing [9], [45], [46], objects with complex tem-
poral patterns could be better characterized using (unimodal)
higher-dimensional yk , not to mention potential fusion with
audio features [47]–[50] via multimodal yk.

B. Methods

Our review of BSS in brain imaging [1] studied the
underlying strategies of many methods. It offered a general,
broad view of how different methods relate to each other
by defining a common hierarchical taxonomy to accurately
describe them. The unified framework introduced in that
work provided a clear path for general MDM model devel-
opment, which we adopted here to break from current MDU
paradigms [15, Ch. 8]. However, it did not consider any of the
issues addressed here, including combinatorial optimization,
scale control, and non-orthogonal Wm. These were also
missing from our early investigations in [11]–[13]. Besides
the vastly expanded methodology—which also introduces the
general Kotz distribution for MISA—the current work presents
a large number of new experiments and realistic applications.

Notably, the Kotz distribution was first introduced for BSS
in [51] but applications were limited to MDU problems (IVA
specifically). Consequently, that work cannot be applied to
cases where dmk > 1. In addition, its implementation treated
the iteratively updated subspace covariances Σy

k as constant
with respect to W (previously, [30], [52] had hard-coded
Σy

k = I). The gradients derived for our MISA implementation
do not make that assumption and, thus, yield a different search
direction than [51] at each step during optimization, even for
the IVA case. Also, the optimization approach in [51] was
based on simple line search, which is rather different from the
interior-point barrier optimization (with bounds and option for
non-linear constraints) we utilize here. We also note the use
of our novel scale control formulation for numerical stability.

Another work [53] also explores identification of subspace
structures in the general MDM setting. However, it is limited
to subspaces with Gaussian distribution and, thus, can only

leverage SOS to identify subspaces. In contrast to our approach
with the Kotz distribution, the approach in [53] cannot leverage
HOS for subspace identification. Moreover, our option for the
Kotz distribution implies that it suffices to set the parameters
in (4) to ψG (Section IV-B) and our model simplifies to the
same model in [53], highlighting the generality of MISA. The
same argument applies to [23], [54].

Finally, premature convergence to local minima due to the
mis-assignment of sources to subspaces is a known challenge
for SDM model fitting [55]. However, general MDM prob-
lems have drastically more intricate within- and cross-dataset
subspace-to-subspace interactions. When subspaces span mul-
tiple datasets, a combinatorially higher amount of possible

local minima (upwards of
∏K

k=1

(C̄−
∑

k−1

l=0
dl

dk

)
= 6 · 1019

in Section V-B.4) undermines the numerical optimization
performance (here, d0 � 0). While combinatorial issues are
common in other research areas [56]–[58], they have been
largely neglected in BSS literature because of how simple (and
often irrelevant) they are for ICA.

In Sections IV-D and IV-E we propose novel combinatorial
optimization algorithms for evasion of local minima in the
numerical optimization of (1). To the best of our knowledge,
this is the first attempt at disentangling these permutation
ambiguities in the general MDM case. In contrast to [59], our
approach serves only to move a particular solution out of a
local minima so that the numerical optimization may resume.
Plus, the structural subspace priors contained in Pk guide
our combinatorial procedures without relying on ancillary
objective functions to determine residual source dependences.

IV. METHODOLOGY

A. Scale Control

An inherent property of independence is invariance to
arbitrary scaling of each or any source (i.e., multiplication by
a non-zero scalar value), which is why ICA sources have scale
ambiguity. This has an important implication on the geometry
of the resulting objective function we seek to optimize. First,
visualize the elements of W into a D̄-dimensional vector
(D̄ = V̄ C̄) w = vec (W) as would be done in a typical
numerical optimization setting. Due to scale invariance, eval-
uation of the objective function on either w or aw, where a
is a non-zero scalar, yields the same value.

Since the objective function evaluates to the same values
along the line2 spanned by w, only certain changes in the
direction of w incur changes in the objective function. Conse-
quently, it suffices to look for a solution on the surface of the
hypersphere associated with a given a, since the landscape
of objective function values would be identical across con-
centric (hyper) shells (Fig. 3 (a)). Moreover, scale invariance
induces a “star” shape to the contour lines of the objective
function in this scenario (Fig. 3 (b)). Since gradients are
orthogonal to contour lines, they also ought to be orthogonal to
w and lie on the tangent hyperplane of any given hypersphere
(Fig. 3 (c)).

2Strictly speaking, this line is only a portion of the entire hyper sur-
face (polyhedron) of ambiguity.
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Fig. 3. Geometry of the independence-driven objective function in SDU
problems. (a) Due to the scale invariance property of statistical independence,
evaluation of the objective function on either w or aw, where a is a
non-zero scalar, yields the same value. Only certain changes in the direction
of w incur changes in the objective function. Thus, the solution space
of independence-driven SDU problems lies on a hypersphere. (b) Scale
invariance induces a “star” shape on the contour lines. (c) Consequently, the
gradient of a scale invariant function must lie on the tangent hyperplane of
the hypersphere associated with a given w.

The main implication is that stepping in the (negative)
direction of the gradient towards a local minimum will likely
inflate w and lead the search direction in an outward spiral
with respect to w. This can be a problem if the norm of
w grows indefinitely and eventually becomes numerically
unstable. More importantly, as the norm of w increases toward
outer shells, the landscape of the objective function starts to
stretch (because its values are kept the same while the surface
area of the hypersphere grows). Consequently, the gradient
grows shorter regardless of its proximity to any local minimum.
The smaller gradient will then lead to shorter step lengths,
likely yielding very little improvement at latter stages of the
numerical optimization and deterring convergence.

This issue is often disregarded in the literature (incidentally,
the Infomax algorithm [19] is free of this issue) and should
be addressed prior to evaluation of the efficient relative gradi-
ent [2, Ch. 4]. One simple approach to address it is to constrain
the norm of w. While direct, implementing this approach can
be quite inefficient. Rather, since any scale is equally accept-
able (at least in theory), we propose to control the estimated
source scales by fixing them in the model. Specifically, this is
accomplished by assigning the estimated subspace correlation
matrix Ry

k as the model dispersion matrix Dk in the Kotz
distribution, effectively making the objective function scale
selective rather than scale invariant (Section IV-B). Therefore,
whenever the source estimates from the data do not support
the model variances associated with this choice of Dk = Ry

k ,
the mismatch induces changes in W that lead their variances
towards the prescribed ones. In summary, the proposed scale
selective formulation eliminates scaling issues without the
need for a formal constraint.

B. Objective Function

Equation (1) admits some simplifications following a few
manipulations. First, we note that h(y) = h(Wx) =
h(x) + ln |det(W)|, and h(x) can be discarded since it
is constant with respect to W. Second, ln |det(W)| =∑M

m=1 ln |det(Wm)| since W is block diagonal. Finally,
when Vm �= Cm, for any m, the determinant of Wm is

undefined. In order to circumvent this issue, we propose
to substitute the determinant by the product of the singular
values of Wm, i.e.,

∏Cm

i=1 σmi, where σmi are the diagonal
elements of Λm = U�

mWmVm originating from the singular
value decomposition Wm = UmΛmV�

m. We note that
|detW| =

∏C
i=1 |σmi| when W is non-singular and square.

Altogether, we can recast (1) as:

Ǐ(y) = −
M∑

m=1

JDm −
K∑

k=1

E [ln p(yk)] , (3)

where JDm =
∑Cm

i=1 ln |σmi|, and yk = PkWx.
This formulation is still incomplete because p(yk) is unde-

fined. Here we choose to model each subspace pdf as a
multivariate Kotz distribution [14], [60]:

p(yk) =
βkλνk

k Γ
(

dk

2

) (
y�

k D−1
k yk

)ηk−1

π
dk
2 (detDk)

1
2 Γ (νk)

e−θk(y�
k D−1

k
yk)

βk

(4)

where dk is the subspace dimensionality, βk > 0 controls
the shape of the pdf, λk > 0 the kurtosis (i.e., the degree
of peakedness), and ηk > 2−dk

2 the hole size, while νk �
2ηk+dk−2

2βk
> 0 and αk � Γ(νk+β−1

k )

θ
β
−1
k

k
d

k
Γ(ν

k)
for brevity. Γ (·)

denotes the gamma function. The positive definite disper-
sion matrix Dk is related to the covariance matrix Σy

k by
Dk = α−1

k Σy
k .

This is a good choice of pdf since it includes the multivariate
power exponential family, particularly the classical multivari-
ate Gaussian and multivariate Laplace distributions when the
parameter set ψk = [βk, λk, ηk] is set to ψG = [1, 1

2 , 1] and
ψL = [12 , 1, 1], respectively.

Minimizing (3) is equivalent to maximizing the (log-)
likelihood of yk . In the following, we estimate Σy

k from the
data. This is appealing because the sample average Σ̄x is
readily available and can be conveniently combined with W
to produce an approximation of Σy

k for substitution in Dk.
This simple choice permits the reparameterization of Σy

k as a
function of W, specifically Σ̄y

k = 1
N−1PkWXX�W�P�

k .
Two well-conceived dispersion matrix parameter choices are

proposed for the Kotz distribution, one emphasizing invariance
to source scales and the other not, resulting in two useful
objective functions. Firstly, we let Yk = PkWX and use
n to index each of the N observations used in the sample
mean approximation of the expected value E[·] in (3). Sec-
ondly, based on the log-likelihood ln p(yk), we define JCk

=
ln detDk, JFk

= ln
(
y�

k D−1
k yk

)
, and JEk

=
(
y�

k D−1
k yk

)βk .
Then, we let Dk = α−1

k Σ̄y
k for the standard scale invariant

case:

Ǐ(y) = −
M∑

m=1

JDm +
1
2

K∑
k=1

JCk
− f(K, βk, λk, ηk, dk, νk)

−
K∑

k=1

ηk − 1
N

N∑
n=1

JFkn
+

K∑
k=1

λk

N

N∑
n=1

JEkn
, (5)
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where

f(K, βk, λk, ηk, dk, νk) =
K∑

k=1

[
ln βk + νk ln λk + ln Γ

(
dk

2

)

− dk

2
ln π − ln Γ (νk)

]
,

with gradient given by:

∇Ǐ(W)mik
=

[
Bk +

[
I − BkY

�
k

]
Ak

]
X�

m − (
W−

m

)�
(6)

∀k∈{1,...,K},∀m∈{1,...,M}

where ik represents all source indices (rows of
∇Ǐ(W)m) assigned to subspace k, ◦ is the Hadamard
product, and

Ak =
[
Σ̄y

k

]−1
Yk

Bk = Akdiag(tk)

tk =
(

2βkλk

N
zβk

k +
2 (1 − ηk)

N

)
◦ z−1

k

zk = [zk1, zkn, . . . , zkN ]

zkn = y�
kn

[
α−1

k Σy
k

]−1
ykn.

For the scale-controlled approach, we let Dk = Ry
k , and the

correlation matrix Ry
k � γ�

k Σy
kγk, and γk � (Idk

◦ Σy
k )−

1
2 .

In this case, only correlations are estimated from the data,
while variances are fixed at αk. The advantage of this choice
is that it controls the scale of the sources rather than letting
them be arbitrarily large/small.

In the scale-controlled case, Ǐ(y) is identical to (5), except
JCk

= ln det
(
γkΣ

y
kγ

�
k

)
, JFkn

= ln(y�
kn

[
γkΣ

y
kγ

�
k

]−1
ykn)

and JEkn
=

(
y�

kn

[
γkΣ

y
kγ

�
k

]−1
ykn

)βk

, with gradient:

∇Ǐ(W)mik
=

[
γ̄−1

k Bk +
[
γ̄kGk − BkA�

k

+
[
Z−1

Σ − γ̄2
k

]]
Yk

]
X�

m − (
W−

m

)�
(7)

∀k∈{1,...,K},∀m∈{1,...,M}

where

γ̄k = (I ◦ ZΣ)−
1
2

ZΣ = PkWXX�W�P�
k

Gk = I ◦ (
BkY

�
k

)
Bk = Akdiag(tk)
Ak = ZΣ

−1γ̄−1
k Yk

tk =
(

2βkλk

N
zβk

k +
2 (1 − ηk)

N

)
◦ z−1

k

zk = [zk1, . . . , zkn, . . . , zkN ]

zkn = y�
kn

[
γkΣ̄

y
kγ

�
k

]−1
ykn.

While the equations presented above are general and support
any choice of subspace specific parameters ψk, in the exam-
ples presented here, we opted to use the same set ψk = ψL

for all subspaces, modeling subspaces as multivariate Laplace
distributions with correlation estimation. The derivation of the
gradients can be found in supplemental material along with
a description of the relative gradient update ∇Ǐ(W)W�W

[2, Ch. 4] [61] we used together with the L-BFGS algorithm
with bounds (L-BFGS-B) [62], [63] available in the non-linear
constraint optimization function fmincon of MATLAB’s Opti-
mization Toolbox. Nonlinear constraints such as those shown
next can be easily incorporated in fmincon’s interior-point
barrier method [64, Ch. 19] [65].

C. Pseudoinverse Reconstruction Error

In the overdetermined case, i.e., when Vm > Cm and
W is wide, it is necessary to constrain W in order to
evade ill-conditioned solutions. The error incurred by W
in reconstructing the data samples can indirectly guide and
constrain W. The mean squared error (MSE) between x and
x̂ gives the following formulation of the reconstruction error
(RE):

E = E

[
‖x̂ − x‖2

2

]
≈ 1

N

n=N∑
n=1

‖x̂n − xn‖2
2 . (8)

Firstly, the optimal linear estimator of x based on y for a
system with estimation error e’, such as y = Wx+e’, is Ây,
where Â is the minimizer of MSE:

Â = ΣxW� (
WΣxW� + Σe’

)−1
, (9)

and Σx is the data covariance. In the high SNR regime,
diag

(
WΣxW�) 	 diag

(
Σe’

)
element-wise and, as dis-

cussed in [66], yields

Â = ΣxW� (
WΣxW�)−1

= ΣxW�Σy−1. (10)

This choice of Â always minimizes the error no matter how
far W is from the true W� and serves little as a constraint.

Assuming unit source variances and data whitened such that
Σx = E

[
xx�]

= I, in ICA problems W� must be row ortho-
normal, i.e., W�W�

� = I. Our previous work [12] utilized
Â = W� to reconstruct x as x̂ = W�Wx instead. Under
the whitening assumption, this can be implemented in (8) as a
soft regularizer provably equivalent to regularization by either
the Frobenius norm

∥∥W�W − I
∥∥2

F
or

∥∥WW� − I
∥∥2

F
, when

the regularizer constant approaches infinity [67]. Therefore,
this approach effectively penalizes non-orthogonal W.

Here, our investigation of the singular value decomposition
(SVD) of W reveals that, if the matrix has orthonormal rows,
then its singular values are all 1 and W = USV � = UV �,
where S = I, U are the left singular vectors of W, and V
its right singular vectors. Therefore, W�W = V U�UV � =
V V �. Since W is wide, V is tall, which implies V V � �= I,
in general. Thus, using x̂n = W�Wxn, the RE simplifies as:

E� ≈ 1
N

n=N∑
n=1

∥∥(V V � − I)xn

∥∥2

2
. (11)

This clearly shows that RE with Â = W� implicitly acts as a
constraint on the right singular vectors of W, selecting those
whose outer product approximates the identity matrix I.

If not orthonormal, W�W = V S2V � since S �= I. Thus,
we propose to use the pseudoinverse W− = W�(WW�)−1

in lieu of W�, with x̂n = W−Wxn. Then, this pseudoin-
verse RE (PRE) (E−) also simplifies as (11). This result
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follows from the SVD of the pseudoinverse W− = V S−1U�

and W−W = V S−1U�USV � = V V �. Unlike before, this
formulation effectively constrains V in the general case. Note
that since Σx = I in the case of white data, the optimal
estimator (10) simplifies to Â = W� (

WW�)−1 = W−,
i.e., the pseudoinverse gives the least error when the data is
white (if the SNR is high), regardless of the values contained in
W. Thus, for white data, we conclude that the RE formulation
(E�) is more appropriate than PRE (E−). Our experience,
however, suggests that W is far more likely non-orthogonal
in real noisy, non-white data, justifying our preference for E−.

Furthermore, we introduce a normalization term, dividing
E− by xnorm, the average power in the data, and we get the
proportion of power missed:

E ≈ 1
xnorm

1
N

n=N∑
n=1

∥∥∥W� (
WW�)−1

Wxn − xn

∥∥∥2

2
, (12)

where xnorm ≈ 1
N

∑n=N
n=1 ‖xn‖2

2. Its gradient has the form:

∇E(W) = C − CW−W (13)

where

C =
2

xnorm N

[
W−]�

B

B = XZ� + ZX�

Z = W−WX− X.

Since X and W are block-diagonal, these operations can be
computed separately on each dataset by replacing X with Xm

and W with Wm. This can be used both as a data reduction
approach or a nonlinear constraint for optimization.

Finally, in MDU problems, when there is prior knowl-
edge supporting linear dependence (i.e., correlation) within
subspaces, then one useful and popular approach is to use
group PCA projection to initialize all blocks of W [68]. It
works by performing a single data reduction step on datasets
concatenated along the V dimension. We have investigated this
approach in a separate work [69], offering efficient algorithms
to enable this procedure when the number of datasets is
very large (M > 10000). For comparison purposes, we also
considered the use of group PCA (gPCA) as an alternate
initialization approach for W in our experiments.

D. MISA With Greedy Permutations (SDM Case)

We present a greedy optimization approach to counter
local minima resulting from arbitrary source permutations.
To illustrate, consider a single dataset and assume Pk is a
user-specified prior. Using abbreviated notation throughout,
suppose P1 = [1 1 1 0 0] and P2 = [0 0 0 1 1] define
a partitioning of five sources into two subspaces: p(y) =
p(yk=1)p(yk=2) = p(y1, y2, y3)p(y4, y5), where p(·) is a joint
pdf. It would be equally acceptable if the data supported either
p(y) = p(y4, y5)p(y1, y2, y3) (entire subspace permutation) or
p(y) = p(y1, y3, y2)p(y5, y4) (within-subspace permutation)
or even some combination of these two cases. However, if the
data supported p(y) = p(y1, y4)p(y2, y3, y5), then that would
not be equivalently acceptable, denoting a local minimum.

Algorithm 1 Greedy Permutations GP

When these occur, the numerical optimization in
Section IV-B stops early, at the newly found local minimum.
At that point, we propose to check whether another
permutation of sources would attain a lower objective value.
This entails two challenges: 1) given the combinatorial
nature of the task, even mild numbers of sources lead to
huge numbers of candidate permutations, and 2) when the
optimization stops early, most sources are still mixed and
there is not enough refinement to establish which sources
are dependent and belong in the same subspace. The low
refinement precludes the combinatorial problem since it
hinders the ability to distinguish between dependent and
independent sources in the first place.

Firstly, therefore, we propose to transform the single-dataset
multidimensional (SDM) ISA task into single-dataset unidi-
mensional (SDU) ICA. We do that by temporarily voiding and
replacing subspaces of size dk ≥ 2 by multiple sources (each
with dk = 1), and then restarting the numerical optimization
from the current W estimate (local minimum). This pushes all
sources towards being independent from each other. However,
dependent sources will only be as independent as possible
and will retain some of their dependence. Partly motivated
by [59], this approach secures enough refinement to distinguish
among subspaces. Thus, given sources that are as independent
as possible, we propose a greedy search for any residual depen-
dence among them. The greedy solution is valid because the
specific ordering within subspaces is irrelevant. Unlike [59],
our approach does not require accessory objective functions
to detect dependent sources. Instead, it uses the same scale
invariant objective defined in (5).
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Algorithm 2 MISA-GP for SDM Problems MISA-GPSDM

The procedure is 1) switch to the ICA model (effectively,
make P = I), 2) numerically optimize it, 3) reassign sources
into subspaces one at a time. In the latter, as indicated in
Algorithm 1 (GP), each source is assigned sequentially to each
subspace (if two or more are assigned to the same subspace,
they are reassigned together thereafter). Thus, the model
changes with every assignment, and simple evaluation of the
objective cost(·) (without numerical optimization) produces
a value for each particular assignment. The scale invariant
formulation ensures source variances do not influence the
estimation. The assignment minimizing the objective function
determines to which subspace a source belongs. Here, assume
that k = K +1 inserts one more row in P for a new subspace;
[:, p] are the contents of columns indexed by p (conversely for
rows); find(·) recovers the indexes of all non-zero elements;
remove_empty_rows(P) removes rows from P containing
only zero entries; eps is the machine’s precision.

After repeating this procedure for all sources, in an attempt
to solve the original model, we order the identified subspaces
so as to match the original prescribed subspace structure P as
closely as possible. This final sorting (match(·)) defines a spe-
cific permutation of the sources, which we then use to reorder
the rows of the local minimum solution W for the original
ISA problem, effectively moving that solution out of the local
minimum. After that, we resume the numerical optimization
of the original ISA problem until another minimum is found.
In our experiments, repeating this procedure just twice in a
row (T = 2) and taking the best out of three solutions sufficed
to drastically improve results. In Algorithm 2 (MISA-GPSDM),
MISA(·) represents the numerical optimization (Section IV-B).

A direct benefit of this approach is that more depen-
dence tends to be retained within subspaces as compared
to [59]. That is a desirable property because it leaves
room for further post-processing and investigation. Another
advantage of our approach is that it can match source

Algorithm 3 MISA-GP for MDM Problems MISA-GP

assignments to user-prescribed subspace priors (P) when they
are available.

E. MISA With Greedy Permutations (MDM Case)

The previous approach addresses cross-subspace interfer-
ence issues due to incorrect allocation of the sources and,
therefore is appropriate for SDM problems. However, it is not
sufficient to perform such procedure in MDM problems since
ambiguities may also occur at the subspace level, i.e., incorrect
allocation of the dataset-specific subspaces.

Consider the following example for a model with three
subspaces spanning two datasets, each dataset containing five
sources. Assume the correct assignment of sources is as fol-
lows: p1(y11, y21, y22)p2(y12, y13, y23)p3(y14, y15, y24, y25),
where the notation ymi refers to source i from dataset
m, and pk(·) is the joint pdf of subspace k. Since
MISA-GPSDM is designed for single datasets, at best,
it produces p1(y11)p2(y12, y13)p3(y14, y15) for m = 1 and
p1(y21, y22)p2(y23)p3(y24, y25) for m = 2. Then, from a
global perspective, these solutions would yield the correct
subspace assignment above, thus solving the MDM problem.
However, it is equally acceptable for SDM solvers to
produce either p1(y11)p2(y14, y15)p3(y12, y13) for m = 1 or
p1(y24, y25)p2(y23)p3(y21, y22) for m = 2 if the datasets are
evaluated separately (notice the bold subscripts). Together they
imply p1(y11, y24, y25)p2(y14, y15, y23)p3(y12, y13, y21, y22),
which does not match the correct assignment and, thus,
fails to produce a solution for the MDM problem. What we
have illustrated here is that within-dataset permutations of
equal-sized subspaces may induce mismatches across datasets
if the datasets are processed separately. Another complicating
factor are subspaces absent from a particular dataset.
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Borrowing from the ideas in Section (IV-D), we propose
three approaches to address these issues. The first, extends
the greedy search to all datasets by sequentially assigning
each source (in every dataset) to every subspace and accept-
ing the assignments that reduce the objective function. This
would yield a complexity of at least O(C̄K), and O(C̄2) in
the (unlikely) worst case of K = C̄. The second, processes
each dataset separately (as in the previous example) and then
applies the same greedy strategy at the level of subspaces
instead. Effectively, this approach cycles through each sub-
space sequentially, trying to determine which of them can be
combined to form a larger subspace. This yields a complexity
of O(CmKM) + O(K2M). The final approach is to test all
possible permutations of subspaces with the same size, after
processing each dataset separately, which yields O((K!)M ).
While this can quickly become computationally prohibitive,
it can also identify better solutions since it evaluates all sub-
space permutations of interest. In this work, we elected to use
the third approach when the number of sources is small and the
second when that number becomes larger (subspace_perm(·)).
Full procedures are indicated in Algorithm 3 (MISA-GP).

V. RESULTS

We present results on multiple experiments satisfying the
requisites outlined in [22], including a summary of var-
ious controlled simulations on carefully crafted synthetic
data, as well as hybrid data and comparisons with several
algorithms.

A. General Simulation Setup and Evaluation

In the following, we consider the problem of identifying
statistically independent subspaces. Thus, in all experiments,
each subspace yk is a random sample with N observations
from Laplace distribution. Subspace observations are linearly
mixed via a random A as x = Ay + e, where e is additive
sensor white noise. A is generated from a standard Gaussian
distribution. Its singular values are then adjusted to yield
the condition number cond(A) prescribed in Table III. Also,
the white Gaussian noise e (zero mean and unit variance)
is multiplied by a scalar value in order to attain the SNR
prescribed in Table III. The SNR is the power ratio between the
noisy signal x and the noise e. The equality SNR = 10

SNRdB
10

permits decibel (dB) specifications.
The quality of results is evaluated using the normalized mul-

tidataset Moreau-Amari intersymbol interference (MISI) (14),
which extends the ISI [70], [71] to multiple datasets.

MISI(H) =
0.5

K(K − 1)

⎡
⎣ K∑

i=1

⎛
⎝−1 +

K∑
j=1

|hij |
max

k
|hik|

⎞
⎠

+
K∑

j=1

⎛
⎝−1 +

K∑
i=1

|hij |
max

k
|hkj |

⎞
⎠

⎤
⎦ (14)

where H is a matrix with elements hij = 1�
∣∣∣PiŴAP�

j

∣∣∣ 1,

with (i, j) = 1 . . .K , i.e., the sum of absolute values from
all elements of the interference matrix ŴA corresponding to
subspaces i and j, and Ŵ is the solution being evaluated.

TABLE III

SUMMARY OF SIMULATION RESULTS. (a, b) MEDIAN (OVER 10
DATASET INSTANCES) OF BEST MISI (OVER 10 INITIALIZATIONS PER

DATASET). (c, d) MEDIAN MISI (OVER 10 INITIALIZATIONS,
1 DATASET INSTANCE)

For fairness, all algorithms are initialized with the same
W0. See optimization parameters in supplemental material.

B. Summary of Synthetic Data Simulations
The performance of MISA in a series of synthetic data

experiments with different properties is summarized below
(Table III). Complete details are available as supplemental
material online.

1) ICA 1 (V̄ > N ): effects of additive noise (a) and
condition number (b) are assessed in a moderately large ICA
problem (C̄ = 75, M = 1) with rectangular mixing matrix
A (V̄ = 8000) at a fairly small sample size regime (N =
3500). Under low SNR (b), MISA outperforms Infomax when
cond (A) �= 1. At high SNR (a), MISA outperforms Infomax
more often than not.

2) IVA 1 (Vm < N , Vm = Cm): MISA performance is
assessed in an IVA problem (c), in which subspaces span all of
M = 10 datasets. Specifically, we study the case when no data
reduction is required (i.e., Vm = Cm = 16), noise is absent,
and observations are abundant (N = 32968). The striking
feature observed here is that the performance of IVA-GL [21]
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is much more variable than that from MISA, especially with
high correlation within the subspaces. MISA performs well
even at low within-subspace correlation levels and is highly
stable when these correlations are larger than 0.2.

3) IVA 2 (Vm < N ): Effects of additive noise (a) and
condition number (b) are assessed in a larger IVA problem
(Cm = 75, M = 16) with rectangular mixing matrix A (Vm =
250) and an abundant number of observations N = 32968.
Data reduction with either group PCA (gPCA) or pseudoin-
verse RE (PRE) produced equivalent results in this large N
scenario. Under low SNR, increasing the condition number
had a fairly small detrimental effect on the performance of
both IVA-L [18] and MISA. More importantly, while both
IVA-L and MISA performed very well at mild-to-high SNR
levels, the performance of MISA on extremely noisy scenarios
(SNRdB = 0.0043) is remarkable (0.1 < MISI < 0.01),
irrespective of using PRE or gPCA.

4) ISA 1 and 2 (V̄ < N , V̄ = C̄): MISA performance
is assessed in ISA problems (d), in which subspaces are
multidimensional, with M = 1. Specifically, we study the case
when no data reduction is required (i.e., V̄ = C̄ = 28), noise
is absent, and the number of observations N is abundant. Fixed
and varying configurations of K = 7 subspaces are considered,
at two subspace correlation ρk settings. The striking feature
observed here is that the performance of both JBD-SOS [23]
and EST_ISA [24] is very poor in all cases, even when
within-subspace correlations are present. MISA-GP is the only
method with good performance, highlighting the large benefit
of our approach for evasion of local minima.

5) ISA 3 (V̄ > N ): Effects of additive noise (a) and con-
dition number (b) are assessed in a mildly large ISA problem
(C̄ = 51, M = 1) with variable subspace dimensionalities
dk, rectangular mixing matrix A (V̄ = 8000) at a fairly small
sample size regime (N = 5250). Under a challenging SNR,
JBD-SOS and MISA fail in virtually all cases (MISI > 0.1).
Inclusion of combinatorial optimization enables MISA-GP to
perform quite well at mild-to-high SNR levels (SNRdB ≥ 3).

Execution times for Table III (a-b) are reported in Table IV.
The timings were recorded on a Linux server (Ubuntu 16.04)
with an Intel Xeon E5-2630v4 (10-core, 20-thread, 3.5GHz)
CPU, 256GB RAM (DDR4, 2.4GHz). The code was executed
in native Matlab without any optimizations.

The timings are higher in Table IV (a) than in Table IV (b)
for PRE-based ICA1 and IVA2 experiments. This is consistent
with a corresponding MISI reduction, which was due to a
less strict stopping condition for the PRE gradient norm.
This suggests that allowing more noise to leak from the
PRE step not only yields poorer MISI performance but also
significantly slows down convergence (about 3-4 times slower
than comparable experiments in Table IV (b)).

In ICA1, Infomax is 1-2 orders of magnitude faster, owing
to its inherently different stochastic optimization strategy and
gradient implementation, which is optimized for a single
dataset. The difference, however, is not due to a difference in
algorithmic complexity. Importantly, Infomax is limited and
cannot generalize beyond SDU problems like MISA.

In IVA2, MISA takes at least twice as long to converge than
IVA-L but attains better results in terms of MISI. Note that the

TABLE IV

TIMING SUMMARY. (a, b) MEAN (OVER 10 DATASET INSTANCES) OF
MEDIAN TIME (OVER 10 INITIALIZATIONS PER DATASET).

TIMES ARE REPORTED IN SECONDS

maximum number of iterations in IVA-L was set to four times
the total number of iterations until convergence for MISA on
the same problem, from the same starting point.

In ISA3, MISA-GP timings are comparable to those of
JBD-SOS. However, MISA-GP attains about one order of
magnitude better results in terms of MISI.

Overall, the reported timings support that the computational
cost of MISA is tractable, especially given it enables universal
application to different problems.

C. Hybrid Data Experiments

We present three major results on novel applications of BSS
to brain image analysis, open sourcing realistic hybrid data
standards (https://github.com/rsilva8/MISA) that test estima-
tion limits at small sample size. The first pushes the conditions
of experiment ICA 1 and emulates a single-subject temporal
ICA of functional MRI (fMRI). The second investigates the
use of IVA with Vm > N for multimodal fusion of brain
MRI-derived data. Finally, the last experiment evaluates the
value of MDM models without data reduction for fusion of
functional MRI (fMRI) and EEG neural signals.

Given the real features from prior publications utilized here,
our experiments indeed reflect the usual size of fMRI, sMRI,
and EEG datasets in neuroimaging multimodal fusion. Typi-
cally, studies combine 2-4 modalities (here, 2-3) with intrinsic
dimensionality Vm of 15k-300k voxels, and 600 timepoints.
The last example also illustrates how MISA can recover
sources even without data reduction of the Vm dimension.
Moreover, we illustrate source estimation with 600-1000 sub-
jects, which is 3-10 times bigger than typical multimodal
fusion datasets. Furthermore, the typical number of sources
in multimodal fusion ranges from 4 to 30 (our experiments
are 4 to 20). Lastly, to the best of our knowledge, no other
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Fig. 4. Correlation with the ground-truth (hybrid temporal ICA). The
correlation between the spatial map estimates from MISA with PRE (RM)
and the ground-truth (GT) is very high with little residual similarity across
sources, suggesting the analysis was successful.

work has attempted general subspace estimation (dmk > 1)
in multimodal fusion, which is feasible with MISA, as we
demonstrate in our last experiment.

1) Single-Subject Temporal ICA of fMRI: Here we consider
temporal ICA of fast acquisition fMRI. The dimensionality of
the data is V̄ = voxels ≈ 60k and N = time points ≈ 1300.
In order to better assess the performance of MISA in a realistic
scenario, we propose to set the mixing matrix A as the real
part of the data. First, we let C̄ = 20 sources. Then, A must
be a 60k × 20 matrix. In order to have it correspond to real
data, we assign to it the first twenty well-established aggregate
spatial maps (3D volumes) published in [72].

For the synthetic part of the data, we propose to simulate
a 20 × 1334 matrix of timecourses y by generating realistic
autocorrelated samples that mimic observed fMRI timecourses
to a good extent. Sampling 20 such timecourses that retain
independence with respect to each other is challenging because
independently sampled autocorrelated time series tend to be
correlated with one another. Building on the simulation prin-
ciples outlined in [22], we seek to avoid randomly corre-
lated timecourses (sources) in order to prevent mismatches
to the underlying ICA model we wish to test. In the same
spirit, we also wish to have sources sampled from the same
distribution used in the model, here a Laplace distribution.
We developed the following steps in order to meet all these
requirements:

1) Design a joint autocorrelation matrix Ryy for all
sources. For the example above, this means a C̄N×C̄N
block-diagonal correlation matrix (C̄N = 26680) with
C̄ blocks of size N × N . Each block is designed
with an exponentially decaying autocorrelation func-
tion with an autocorrelation around 0.85 between time
point n and n − 1, and around 0.2 between n and
n − 10. This structure retains autocorrelation within
each N -long section of an observation while retaining
uncorrelation/independence among sections.

2) Generate 50k C̄N -dimensional observations using a
Gaussian copula [73] and the autocorrelation matrix
Ryy from step 1. Using copulas enables transforma-
tion of the marginal distributions while retaining their
correlation/dependence.

Fig. 5. Side-by-side comparison with the ground-truth (hybrid temporal
ICA). The clear resemblance to the ground-truth maps suggests a successful
recovery of the mixing matrix A. The sample correlation r is shown below
each matched pair. Maps are sorted from highest to lowest correlation.

3) For each of the 50k copula-sampled observations, trans-
form the sample into a Laplace distribution.

4) For each of the 50k transformed C̄N -dimensional obser-
vations, reshape them into a C̄×N matrix and compute
the resulting C̄ × C̄ Ry correlation matrix.

5) Compute the median correlation matrix Ry
med over the

50k observed Ry.
6) Retain the transformed observation whose Ry is closest

to Ry
med and reject the rest.

This type of rejection sampling effectively produces the
desired outcome. Finally, Gaussian noise is added to the
mixture for a low SNRdB = 3. The condition number of
A was 4.59.

In the results, the data was reduced using PRE and then
processed with MISA to obtain independent timecourses. The
correlation between ground-truth (GT) and PRE+MISA spa-
tial map estimates (RM) is presented in Fig. 4, and the spatial
maps (estimating A from Ŵ−) in Fig. 5. MISI = 0.0365.

2) Multimodal IVA of sMRI, fMRI, and FA: In this multi-
modal fusion of structural MRI (sMRI), fMRI, and Fractional
Anisotropy (FA) diffusion MRI data, the dimensionalities are
V1 = voxels ≈ 300k, V2 = voxels ≈ 67k, V3 = voxels ≈
15k, respectively, and N = subjects = 600 (each modality
measured on the same subject). We pursue a hybrid setting
where only the mixing matrices Am are taken from real
datasets to overcome typically small N in patient population
studies. First, we let Cm = 20 sources in each dataset. Then,
A1, A2, and A3 must be 300k× 20, 67k× 20, and 15k× 20,
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Fig. 6. Correlation with the ground-truth (multimodal IVA). The
correlation between the spatial map estimates from MISA with PRE (RM)
and the ground-truth (GT) is very high in all modalities, with little residual
similarity across sources, suggesting the analysis was successful.

respectively. To each, we assign the first twenty aggregate 3D
spatial maps published in [74], [72], [75], respectively.

For the simulated part of the data, we generate three 20×600
matrices of subject expression levels y. K = 20 subspaces,
each with dk = 3 and N = 600 observations, were sam-
pled independently from a Gaussian copula, using an inverse
exponential autocorrelation function with maximal correlation
varying from 0.65 to 0.85 for each subspace. These were
transformed to Laplace distribution marginals (not multivariate
Laplace) so as to induce a controlled mismatch between the
data (only SOS dependence) and the model subspace distrib-
utions (multivariate Laplace—all-order dependence). Finally,
Gaussian noise was added separately in each dataset for a low
SNRdB = 3. The condition numbers of A1, A2, and A3 were
1.52, 4.59, 1.63, respectively.

In the results, the data was reduced using PRE and then
processed with MISA to obtain independent subject expres-
sion levels. Per-modality correlation between ground-truth and
PRE+MISA spatial maps are presented in Fig. 6, and spatial
maps (estimating A from Ŵ−) in Fig. 7. MISI = 0.0273.

3) Multimodal MISA of fMRI, and EEG: We show the
value of MDM models without data reduction for fusion of
EEG event-related potentials (ERP) and fMRI datasets, with
dimensionality V1 = time points ≈ 600, V2 = voxels ≈ 67k,
respectively, and N = subjects = 1001. Let C1 = 4 and
C2 = 6 sources in the ERP and fMRI datasets, respectively,
organized into K = 4 subspaces (ymi represents source i from
dataset m):

k = 1: IVA-type, sources y11 and y21 (dk = 2);
k = 2: MISA-type, sources y12, y22 and y23 (dk = 3);
k = 3: MISA-type, sources y13, y14 and y24 (dk = 3);
k = 4: ISA-type, sources y25 and y26 (dk = 2).

Utilizing real spatial maps and timecourses, A1 and A2 must
be 600× 4 and 67k× 6, respectively, this time ensuring they
form column-orthogonal mixings (with Gram-Schmidt).

For the simulated part of the data, we generate 4×1001 and
6 × 1001 matrices of subject expression levels for ERP and
fMRI datasets, respectively. A total of K = 4 dk-dimensional
subspaces with N = 600 observations each were sampled
from a multivariate Laplace distribution, using an inverse
exponential autocorrelation function with maximal correlation
of 0.65 for each subspace. Noise was absent in both datasets.
The condition number was 1.00 for both A1 and A2.

Fig. 8 shows the results obtained from constrained
MISA-GP, i.e., with Â = W� RE constraint using (8). No

Fig. 7. Summary of multimodal IVA maps. In each panel, ground-truth
(GT) maps are presented on the left and maps estimated from MISA with PRE
(RM) on the right. Each subspace represents the multimodal set of maps (joint
features) with highest, median, and minimum correlation with the GT, from
top to bottom, respectively. No IVA-L comparison available since it failed to
converge, likely due to the small sample size (N = 600) or inability to detect
SOS dependence.

Fig. 8. Multimodal MISA of fMRI and ERP. GT maps are presented
on the left of each panel, MISA-GP estimates in the middle, and corrected
MISA-GP estimates on the right. GT ERPs are presented in blue, MISA-GP
ERPs in dashed red, and corrected MISA-GP ERPs in dashed cyan.

data reduction was performed on the data. The spatial fMRI
maps and ERP timecourses were produced by estimating A
from Ŵ�. Since subspace independence is invariant to linear
transformations (arbitrary basis) within any subspace [17], the
estimation yields timecourses (red) and maps (middle) that do
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not match the GT exactly. In an attempt to correct for that,
we performed additional within-modality ICAs on the columns
of Am corresponding to subspaces. This effectively selected
for a particular basis within each subspace (right maps and
cyan timecourses). The ability to choose a particular repre-
sentation demonstrates the kinds of post-processing enabled
by MDM models. Overall, this result validates and illustrates
the benefit of a constrained optimization approach.

VI. CONCLUSION

We have presented MISA, an approach that solves multiple
BSS problems (including ICA, IVA, ISA, and more) under the
same framework, with remarkable performance and improved
robustness even at low SNR. In particular, we have derived a
general formulation that controls for source scales, leveraging
the flexible Kotz distribution in an interior point non-linear
constraint optimization, with PRE as a general and flexible
formulation for either direct subspace estimation or dimension-
ality reduction, in conjunction with combinatorial optimization
for evasion of local minima, permitting self-correction to the
closest subspace structures supported by the data (MISA-GP).
Altogether, the proposed methods permit all-order statistics
linkage across multidatasets as well as features of higher
complexity to be identified and fully exploited in a direct,
principled, and synergistic way, even at sample sizes as low
as N = 600.

Flexible approaches like MISA are key to meet the grow-
ing complexity of multidataset tasks. These complexities are
incorporated in the hybrid dataset standards we open source
here, built from relevant results published in the brain imaging
BSS literature. Generalizations building on this work could be
easily developed exploring other divergence families. Future
work will focus on compiling real multimodal datasets to
validate MISA’s ability to capture reliable modes of shared
and unique variability across and within modalities.

It is also worth noting the natural trade-off that exists
between flexibility and complexity. In practice, given some
problem specification and prior information, a dedicated algo-
rithm offers the simplest solution. However, the lack of
flexibility therein often limits its utility to explore different
scenarios. Our work considers a more general case, where
one general solution is easily simplified by taking the domain
information into account for a given problem. The complexity
is unchanged in comparison to a dedicated algorithm. But the
general algorithm makes it very easy to switch between models
and explore different solutions.

We suggest that further optimization for computational
efficiency is certainly possible.
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