IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 16, 2020, accepted December 14, 2020, date of publication December 25, 2020,
date of current version January 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047594

Design, Implementation, and Analysis
of High-Speed Single-Stage
N-Sorters and N-Filters

ROBERT B. KENT ", (Life Member, IEEE), AND MARIOS S. PATTICHIS , (Senior Member, IEEE)

Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
Corresponding author: Robert B. Kent (rkent@unm.edu)

ABSTRACT There is strong interest in developing high-performance hardware sorting systems which can
sort a set of elements as quickly as possible. The fastest of the current FPGA systems are sorting networks,
in which sets of 2-sorters operate in parallel in each series stage of a multi-stage sorting process. A 2-sorter
is a single-stage hardware block which sorts two values, so any list with more than 2 values must be sorted
with a series network of 2-sorters. A primary contribution of this work is to provide a general methodology
for the design of stable single-stage hardware sorters which sort more than 2 values simultaneously. This
general methodology for N-sorter design, with N>2, is then adapted for use in modern FPGAs, where it is
shown that single-stage 3-sorters up to 9-sorters have speedup ratios from 2.0 to 3.5 versus the comparable
state-of-the-art 2-sorter networks. A design system modification is shown to produce even faster single-stage
N-max and N-min filters. When used for max pooling 32-bit data in the fastest analyzed FPGA, a single
9-max filter will process 500 million 9-pixel groups per second (4K:3840x2160 at 500 frames/second). The
single-stage 9-median filter using this design methodology, useful in image processing, is shown to have
speedup ratios of 3.0 to 4.1 versus state-of-the-art FPGA network implementations, even though its resource
usage is comparable to, often better than, the network implementations. Ten 8-bit 9-median filters operating
in parallel in the fastest FPGA will process over 5.4 billion pixels/sec (4K at over 600 frames/second).

INDEX TERMS Field programmable gate arrays, FPGA, image filtering, merging, sorting, sorting networks,

max pooling, median filters.

I. INTRODUCTION

Some of the most successful efforts to use hardware accel-
eration for computing tasks have been in the full sort and
rank order filtering of unsorted lists of values. The main
reason for this is the inherent use of parallel processing
in hardware sorting systems such as sorting networks. Two
sorting network algorithms introduced by Kenneth Batcher,
0Odd-Even Merge Sort (O-EMS) and Bitonic Merge Sort, are
today’s state-of-the-art algorithms for sorting operation speed
in FPGAs [1]-[4].

These state-of-the-art sorting networks use 2-sorters as the
hardware blocks which operate in parallel during the series
of stages in the sorting process. Fig. 1 shows a schematic for
a 2-sorter.

When a sorting network only uses 2-sorters, even small
lists with more than 2 values must be sorted with a sorting

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

network. Networks which sort 3 or 4 values require 3 stages
in series, so these small sorting networks take approximately
3x longer to complete their sort operations, versus one of
the single-stage 2-sorters that are used in the network. Fig. 2
shows a schematic for a 2-sorter 4-network, showing its series
of 3 stages.

The 2-sorter 4-network shown in Fig. 2 is one of a set of
small 2-sorter networks which have historically been consid-
ered optimal. They have been considered optimal as they use
both a minimum number of series stages and a minimum of
hardware resources, i.e. 2-sorters. Until now, 2-sorters have
been the only small single-stage sorting blocks that have been
available, so this definition of optimal made sense.

The number of series stages for the best 2-sorter networks
which sort from 3 up to 9 values are shown in the first row of
Table 1. The data in the header row and this first data row, both
highlighted in tan, have been known for decades, and remain
unchanged today. This data can be found in Donald Knuth’s
1998 text [5], but the same data was in his 1973 version as

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

2576 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0002-1189-4295
https://orcid.org/0000-0002-1574-1827

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

In_1

Out_1
—-| 1
In_0 0

Comparison Block:
One 2-value
Comparison

Out_0
;F
«

In_1 >= In_0 ge10

Output MUX Block:
2-to-1 per-bit
Multiplexers

FIGURE 1. Commonly-used stable single-stage hardware 2-sorter.

3 [t Out_1 In_1 Out_1 D ous
2-sorter 2-sorter
2 D In_0 out_0 In_0 out_0
In_1 Out_1 ow_2
2-sorter
In_0 out_0 O ouws
In_1 Out_1 In_1 Out_1
1 D>— 1]
2- sorter 2-sorter
no D In_0 out_0 In_0 out_0 > owo
4-Network 4-Network
st nd rd
15t Stage 2" Stage 31 Stage Outputs

Inputs

FIGURE 2. Schematic of 3-stage 2-sorter 4-network.

TABLE 1. Estimated N-sorter speedup vs the best 2-sorter networks.

N: Number of Values to Sort 2 4 5 6 7 8 9
N-Network Series Stages [5][6] 3 3 5 5] 6 6 7
N-Sorter Equivalent Stages 1 1.5 1.5 2 2 2 2
Estimated N-Sorter Speedup 3 2 d.8 2458 23 5.8

Equivalent Stages: Estimated /N-Sorter Prop Delay in 2-Sorter Stage Units
Speedup = N-Network Series Stages / IN-Sorter Equivalent Stages

well. A more recent reference [6] still shows the same data.
The data in this N-Network Series Stages row is effectively
propagation delay data, normalized by the propagation delay
of a single 2-sorter.

For N values of 3, 4, 7, and 8, the data for the N-Network
Series Stages row in Table 1 come from Odd-Even Merge Sort
networks. The data in this row for N values of 5, 6, and 9 are
derived from manually designed 2-sorter networks.

The initial motivation for the current paper is to create
small single-stage N-sorters, for N>3, which will have sig-
nificantly lower propagation delay values than those found in
the first data row of Table 1. Fig. 3 shows a block diagram for
these proposed N -sorters.

A comparison of Figs. 1 and 3 shows that a 2-sorter is one
instance of an N-sorter design. Novel N-sorters are created
when a Fig. 3 design is created for N>3.

When the novel N-sorters are implemented in modern
Xilinx FPGAs, for N from 3 to 9, it is estimated that their
normalized propagation delay values will match those in the
pink second row of Table 1. The estimated speedup values of
the N-sorters are then listed in the green last row of Table 1.
These FPGA estimates are generated and discussed in detail
in Section IV-B.

Our first major contribution has been to create a gen-
eral design system for Fig. 3 N-sorters, for N>3. The next
important contribution was then to modify the general design

VOLUME 9, 2021

N Unsorted Inputs

In_X Input Port Values I

Output MUX Block
Comparison Signals Block ? N Sorted Outputs
Each Out_Y
N*(N-1)/2 multiplexer assignment Out_Y Output Port Values
Input Comparison Signals contains
l N input data values

and (N-1) multiplexer
select line signals

Output MUX Select Line Signals Block

For each Out_Y
(N-1) In_X_goes_to_Out_Y
multiplexer select line signals

FIGURE 3. General single-stage N-sorter design and data flow.

system as needed in order to implement the novel N-sorters
in modern FPGAs. In FPGAs, the target was to produce
high speed designs which would meet the estimates listed in
the second and third rows in Table 1.

After both N-sorter and comparable 2-sorter N-network
designs are synthesized using FPGA software tools, the true
propagation delays and speedup ratios are determined, using
the synthesis results. As will be seen later, the synthesis
N -sorter speedup ratios are in line with the estimated speedup
values listed in Table 1.

Although several researchers have discussed the proba-
ble advantages of sorting more than 2 input values in a
single-stage N -sorter, efforts to produce such N-sorters have
been minimal, and not very successful. These previous efforts
are discussed in Section II-B.

None of these prior research efforts has provided a suc-
cessful general system for N-sorter design, with N>3, in
which the sorters are defined using logic equations. In order
to define an N -sorter, the design system introduced here does
use logic equations, which are specified in Hardware Descrip-
tion Language (HDL) code. Once N -sorters are defined using
synthesizable HDL, often referred to as RTL, they can readily
be implemented in hardware such as FPGAs.

In addition to providing full single-stage N -sorters, another
major contribution of the new design system is the creation of
single-stage rank order N -filters, in which only one or a few
of the values from the sorted list are transferred to an out-
put port. Historically [7], the only well-defined single-stage
N-filters were 2-max and 2-min filters, each of which is
created from a single-stage 2-sorter simply by removing the
unused output port.

In the novel system introduced here, several types of
single-stage N-filters with N>3 are described. It will be
shown that the single-stage 9-median filter produced by this
system is clearly the fastest available 9-median FPGA filter,
and is usually the most resource efficient. The 9-median filter
is used to reduce noise while preserving image structure in
image processing applications [8].

A modification of the design system is used to produce
fast single-stage N-max and N-min filters. All of our FPGA
single-stage 3-max to 9-max filters will be shown to be
significantly faster than equivalent networks of traditional
2-max filters. If used in max pooling operations over 2 x 2 or
3 x 3 image windows, our fast and efficient N-max filters will

2577

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

benefit the implementation of modern Convolutional Neural
Network (CNN) architectures. The speed of our 9-max filters
for max pooling will particularly be emphasized in this work.

Another primary motivation for creating these novel
single-stage sorters and filters is to use them in fast multiway-
merge sorting networks. In the FPGA designs we cover in this
article, the sorters and filters introduced here sort a maximum
of 9 input values. Fast sort and filter operations for more than
9 values requires that the novel single-stage sorters and filters
described here are used in equally novel multiway-merge
sorting networks. When sorting larger lists of values, the sort-
ing networks that use these novel single-stage hardware
blocks promise to be significantly faster than the current
state-of-the-art Odd-Even Merge Sort and Bitonic Merge Sort
algorithms. However, a general discussion concerning these
promising multiway-merge sorting networks is beyond the
scope of this work.

Definitions and a background review are found in
Section II. Section III starts off with an example and discus-
sion of how Comparison Counting [5] operates. Our general
design system is based on a novel implementation of Com-
parison Counting, and most of the rest of Section III details
how an N-sorter is created in RTL using our system. Design
modifications for N-max and N-min filters are also covered.

Section IV describes how the novel N-sorters and N -filters
are implemented in FPGAs, and Section V compares the
Synthesis results of our single-stage FPGA designs to those
of state-of-the-art sorting networks. The three appendices
contain speed and resource usage tables for the N-sorters and
N -filters, as well as 2-sorter networks, and show how the
speed data is used to calculate throughput values and, when
appropriate, video frame rates.

Il. DEFINITIONS AND BACKGROUND

A. DEFINITIONS

N-Sorter (Nsrtr): An N-sorter is a single-stage hardware
block which fully sorts N input values. It consists of N
input value ports, logic to perform all (N+(N—1)/2) 2-value
comparisons of the input signals, possibly additional internal
logic, and the N output value ports which contain the sorted
list of values. The commonly used 2-sorter shown in Fig. 1
is the simplest example of an N-sorter, and Fig. 3 generally
represents all N-sorter designs.

N-Filter: An N-filter is a single-stage hardware rank order
filter. An N-filter is similar to an N-sorter, except that the
output port values are only a subset of the sorted list of N input
values. Examples of N-filters in which there is only one
output value include N-max, N-median, and N-min filters.

Sorting Network (Ntwrk): A sorting network consists of
a network of small single-stage hardware sorters and filters,
connected in such a way as to sort lists larger than what can be
sorted by a single-stage sorter or filter. The small N-sorters
and N -filters used in traditional sorting networks are 2-sorters
and 2-max and 2-min filters.

An example of such a sorting network is the 4-network
shown earlier in Fig. 2. The square blocks shown

2578

in Fig. 2 are single-stage hardware 2-sorters, as shown
in Fig. 1.

Propagation Delay: A shortened version of worst case
propagation delay, propagation delay is the time required for
an input signal to propagate to an output along the slowest
path in a single-stage or network sorting block.

Max Frequency (MaxFreq): Max frequency is the inverse,
1/propagation_delay, of the worst case propagation delay.
This is the maximum clock frequency in which the hardware
block is able to complete its sort operation within a single
clock cycle.

Speedup: The speedup of an N-sorter versus a comparable
2-sorter N-network is the ratio of the network’s propagation
delay to the N-sorter’s propagation delay.

Resource Increase Ratio: The resource increase ratio of an
N-sorter, versus a comparable 2-sorter N-network, is equal
to the number of N-sorter hardware resources divided by the
number of N-network resources.

Stable Sort [5]: In a stable sort, equal values in the output
sorted list are presented in the same order that these values
are found in the input list. This is important if these values
are keys in key/value pairs.

Mux: Multiplexer

B. N-SORTER AND N-FILTER BACKGROUND

The state-of-the-art algorithms for sorting speed-of-operation
in FPGAs are Odd-Even Merge Sort and Bitonic Merge Sort,
both of which were introduced in Kenneth Batcher’s classic
paper [1]. Recent technical papers and texts confirm that these
two algorithms are still the state-of-the-art [2]-[4]. These
network algorithms use sets of 2-sorters operating in parallel,
so their speed is limited by the speed of a 2-sorter.

Various single-stage hardware 2-sorter designs have been
described in the technical literature. The 2-sorter shown
in Fig. 1 seems to be the most commonly-used 2-sorter cur-
rently found in FPGAs or similar hardware types. This type
of bit-parallel 2-sorter was described in the literature as early
as 2001 [9], and has quite possibly been described earlier.
This 2-sorter consists of 2 input ports, a 2-value comparison
block to compare the values, and 2 sets of 2-to-1 output
multiplexers, in which the comparison result signal is used
as the select line for each 2-to-1 multiplexer.

As mentioned in the introduction, the only single-stage
filters previously defined were 2-max and 2-min filters,
each of which is created by removing the unneeded output
port. In [7], a full 2-sorter is called a “compare-swap ele-
ment’’, and a 2-max or 2-min filter is called a “‘select-value
element”.

A number of researchers have noted the probable advan-
tages for single-stage N-sorters with N>3, but made no
attempt to define how such N-sorters could be built. One such
paper described how use of single-stage “‘k-sorters” would
improve the speed of multiway-merge sorting networks [10].
A more recent paper using similar multiway-merge concepts
suggested building ‘““n-sorters” using threshold logic [11].
No details were given as to how to build such n-sorters, and

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

threshold logic does not exist in the FPGAs which are targeted
in this work.

In another relatively recent technical paper concerning
sorting in FPGAs [7], the authors note that it would be
advantageous to sort more than 2 values in a single-stage
hardware sorter. The main advantage that these authors see is
that fewer hardware resources would presumably be needed
for a single-stage N -sorter, versus a multi-stage network of 2-
sorters. Once again, there is no discussion in this article
concerning how such a larger N-sorter would be built.

Several researchers have attempted to design single-stage
hardware N -sorters for N >3, with mixed results. One patent
that discusses single-stage hardware N-sorters, with N>2,
was granted in late 1986 [12]. The patent’s Figure 5 appears to
setup output multiplexers to correctly sort a list of 3 unsorted
values. This Figure 5 constructs the output multiplexers from
a 2-level set of AND/OR gates.

However, the inventor does not develop a system of equa-
tions for his 3-sorter that can be used to design larger sorters,
or even explain the 3-sorter he has created. Since no equations
are presented, there is also no information on how the 3-sorter
design could be ported to a different hardware type.

A single-stage hardware 3-sorter, called the “Sort-3a
Unit”, was discussed in 2 technical papers. In one [13],
only an equation for the max of 3 values was given. In the
second [14], equations for all 3 max, median, and min outputs
were presented. The problem with this sorter definition is
that, when all 3 values are equal, the max and min values are
set to 0, no matter what the common input value is.

One paper shows a block diagram of a hardware 3-sorter in
its Figure 2 [15]. However, no equations were given to show
how the max, median, and min values are produced.

One patent application does attempt to define a system
for building hardware N -sorters for any number of N input
values [16]. Although no prior art was referenced in this
application, the initial portion of his algorithm seems to
be a reasonably straightforward version of Comparison
Counting, which Donald Knuth describes as Algorithm C,
in Section 5.2 of the 1998 2nd Edition of his ““Sorting and
Searching” textbook [5]. Knuth also seems to call this algo-
rithm Enumeration Sort, and notes that this algorithm was
first published by Friend [17].

This patent application first attempts to use comparison
result counting to determine the output ranks of the N input
values, using a hardware NXN comparison matrix. In the
matrix, comparison signals of an input with itself are allowed
to be hardwired to 1. However, for 2 separate input signals,
InA and InB, both InA>InB and InB>InA comparison sig-
nals are constructed, even though only one of these is needed.
This means that his comparison array has N (N —1) compar-
ison signals, twice as many as the Nx(N —1)/2 comparisons
that are needed.

After the comparison matrix is constructed, the patent
application defines an excessive 13 more steps to pro-
duce multiplexer select lines for the output port multiplex-
ers. Included in these steps are shift register operations,

VOLUME 9, 2021

which transforms a combinatorial algorithm into a more
time-consuming one that requires clocking.

Ill. GENERAL N-SORTER/N-FILTER DESIGN SYSTEM

In Section III, we present our novel methodology for creating
stable single-stage N -sorters, with N >3. The N-sorter design
system described here will work for any hardware type that
uses an HDL to specify its designs. The particular HDL
used in this work is SystemVerilog (SV) [18], but the design
principles defined here are easily implemented using other
HDLs as well. Since SystemVerilog uses C syntax for logi-
cal equations, the SV RTL code displayed in the following
sections should be fairly easy for all to understand.

Section IV will describe how this general design system
is optimized in order to implement N-Sorters and N -filters in
FPGAs, and FPGA results will then be presented in Section V
and in the appendices. However, the principles discussed in
this section are not hardware-specific, and can possibly be
adapted for software algorithms as well.

Our innovative algorithm uses Comparison Counting to
produce fast and efficient N-sorters, and Section III-A shows
how Comparison Counting works, using easily understood
matrix figures. Sections III-B, III-C, and III-D then detail
exactly how our N-sorters are designed, and how Comparison
Counting is incorporated in the design methodology.

Section III-E shows how our stable, non-increasing
N-sorter designs are able to produce stable, non-decreasing
N-sorters, without modification to the base design. Finally,
Section III-F discusses design of single-stage N-filters in
general and how design of max and min filters enable their
especially fast operation.

A. COMPARISON COUNTING MATRIX EXAMPLE

A comparison result matrix is used here to help clarify exactly
how the comparison result counting algorithm works. The
comparison matrix configuration for a 7-Sorter is shown
in Table 2.

All N-sorters require N*x(N—1)/2 2-value comparison
result values, which is the number of combinations of 2 values
in a list of the N input values. For the 7-sorter, there are then
21 = 7%6/2 comparison result signals. The unhighlighted
lower left half of Table 2 contains the 21 comparison result
signals for the 7-Sorter.

The name of each comparison signal is a concatenation of
“ge”, for >, the input port number on the left side of >, and
then the input port number on the right side of the > operator.
For example, the SV initialization statement for ge65 is

wire ge65 = (In_6 >= In_5);

In each column of unhighlighted cells, the comparison
results signals are listed which have the column input on the
left side of the > operator. In each row of the unhighlighted
section, the comparison results signals are listed which have
the row input on the right side of > operator.

The lower left half of the matrix is separated from the
upper right half by a diagonal of blank cells, in which an
input would otherwise be compared to itself. The highlighted

2579

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

TABLE 2. N-sorter comparison result matrix: 7-sorter configuration.

Right Left Left Left Left Left Left Left
Side Side Side Side Side Side Side Side
In_6 In_5 In_4 In_3 In_2 In_1 In_0
Signals ge6- ge5- ged-— ge3- ge2- gel- ge0-
In_6 ge-6 ! ge65 ! ge64 ! ge63 ! ge62 ! ge6l ! ge60
In 5 ge-5 ! ge54 ! ge53 ! ge52 ! ge51 ! ge50
In_4 ge-4 ! ged3 ! ged2 ! gedl ! gedO
In_3 ge-3 ! ge32 ! ge3l ! ge30
In_2 ge-2 ! ge21l ! ge20
In_1 ge-1 ! gel0
In 0 ge-0
Column Total 6 5 4 3 2 1
Running Total 21 15 10 6 3 1

upper right half of the comparison matrix does not contain
new comparison result signals. Rather, this half of the matrix
is populated by the complemented states of the 21 comparison
results which populate the bottom left matrix half. The cell
containing the complemented state of a comparison result is
mirrored from the cell containing the uncomplemented state,
with the “mirror”” being the diagonal of blank cells.

The 6 signal states in a given column are the winners
for the input in that column. That is, each listed signal state
indicates that the column input is > than the row input in that
cell.

To use the comparison matrix for a given input list of val-
ues, the input values are placed into the appropriate column
and row headers, as shown in the top table in the Table 3
results matrix set. A cell in the lower left half of the matrix is
filled in according to whether the column input is > the row
input. The cells in upper right half of the matrix are filled
in with the complemented state of the associated cells in the
lower left half of the matrix.

TABLE 3. N-sorter comparison result matrix: 7-sorter input list example.

Right Left Left Left Left Left Left Left
Side Side Side Side Side Side Side Side
In_6 In 5 In 4 In 3 In 2 In_ 1 In 0
Values 21 18 21 9 24 18 21
In_6 21 i

1

In_5 18 1 1
In_ 4 21 i o
In_3 9 1 i

In_2 24 . .

In_1 18 1 1 1

In_0 21 1 . 1

Column Total 5 2 4 0 6 1 3
out_Y Out_5 Out_2 Out_4 Out_ 0 Out_6 Out_1 Out_3

In the results matrix, a ’1” represents true. A ’.” (period) represents false

Signals that are true: Output Value Input
In_2 goes_to_Out_6 Out_6 24 In 2
In_6_goes_to_Out_5 Out_5 21 In_6
In_4_goes_to_Out_4 Out_4 21 In 4

Out_3 21 In 0
In_5_goes_to_Out_2 Out_2 18 In_5
In_1 goes_to_Out_1 Out_1 18 In 1
In_3_goes_to_Out_0 Out_0 9 In_3

For each column, the 1’s are summed up and the total is
entered into the Column Total row of the Table 3 top table.
The column total for a given column indicates which output
that column input goes to. The column totals are distinct, even
though there are duplicate values in the input list.

The smaller bottom table in the Table 3 set rearranges some
of the data from the top table, and is sorted according to

2580

the output port number. The highlighted rows in this table
indicate that there are the two values which are duplicated
in the input list. The value 21 occurs 3 times in the input list,
and the value 18 occurs twice.

As shown in the smaller table, for a set of duplicate val-
ues, the output order of those duplicated values matches the
order of those values in the input list. This indicates that
this 7-Sorter (and all N-Sorters created using this system)
produces a stable sort.

The comparison result matrix can aid in understanding how
Comparison Counting operates, but this type of matrix is
not actually implemented in an N-sorter definition, and no
column adders are used. Sections III-B to III-D will present
the details of how an N-sorter in our system implements the
Comparison Counting algorithm presented in this section.

B. PORT AND COMPARISON SIGNAL DEFINITIONS
Specific notation will be used to define the general N-sorter
design system, beginning with the naming of the input and
output port signals. Fig. 4 shows the naming of the port
signals for a 7-sorter defined in SV code. In Fig. 4, the input
and output values are all 32-bit unsigned integers, but the
methodology can be implemented for any type of numeric
value, and for any bit width.

module sort_7_values

(

input [31:0] In6 ,
input [31 : @] In_5 B
input [31:0] In4 ,
input [31:0] In3 ,
input [31 :0] In2 ,
input [31:0] In1 ,
input [31:0] Ino ,
// the max value

output [31 : ©] Out_6 ,
output [31 : @] Out 5 ,
output [31 : @] out4 ,
output [31 : ©] Out_3 ,
output [31 : @] Out_2 ,
output [31 : @] Out_1 ,
output [31 : @] Out_®

// the min value

) s

FIGURE 4. N-sorter SystemVerilog port signal definitions: 7-sorter
example.

The maximum output value is found at the output port with
the maximum numeric suffix. For this 7-sorter, the maximum
value is at Out_6. The minimum value is always found at
Out_0, no matter what the size of the sorter. The other output
values are in sorted order, between the maximum and mini-
mum values.

The input values have the same numeric suffixes as the
output values. The values at the input ports are unordered,
of course, but the input ports are used in a very systematic
manner inside the N-sorter. In particular, the (Nx(N—1)/2)
comparison signals for the N input ports are strictly defined,
as is shown in the 2 columns of signal declarations in Fig. 5.
The comparison operator is always “>"’, and the input
with the higher numeric suffix is always on the left side of
the > operator. The comparison signals are all generated in

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

// 21 comparisons for 7-sorter // 15 comparisons for 6-sorter

wire ge65 In_6 >= In_5

=() s
wire ge64 = (In_6 >= In_4) ; wire ge54 = (In_5 >=1In_4) ;
wire ge63 = (In_6 >= In_3) ; wire ge53 = (In_5 >=In_3) ;
wire ge62 = (In_6 >=1In_2) ; wire ge52 = (In_5 >=1In_2) ;
wire ge6l = (In_6 >= In_1) ; wire ge51 = (In_5 >=In_1) ;
wire ge6@ = (In_6 >= In_0) wire ge50 = (In_5 >= In_ 0) ;

// 1@ comparisons for 5-sorter // 6 comparisons for 4-sorter

wire ge43 = (In_4 >=1In_3) ;

wire ge42 = (In_4 >=1In_2) ; wire ge32 = (In_3 >=1In_2) ;
wire ge4l = (In_4 >=1In_1) ; wire ge31 = (In_3 >=1In_1) ;
wire ge40 = (In_4 >=In_0) ; wire ge30 = (In_3 >=In_@) ;

// 3 comparisons for 3-sorter // 1 comparison for 2-sorter
wire ge21 = (In_2
wire ge20 = (In_2

>=1In_1) ;
>=1In_0) ; wire gel®e = (In_1 >=1In_@) ;

FIGURE 5. The (N+(N—1)/2) comparison result signals: 7-sorter example.

parallel in the Comparison Signals Block, the top left block
shown in Fig. 3.

Hardware synthesis tools typically provide a simple and
efficient hardware block which produces a 2-value compari-
son signal, and it is assumed that this default block will be
used. If desired, the default 2-value comparison block can
be replaced with a user-designed block, but this will not
impact the general N-sorter design system described here.
The 2-value comparison block size scales with bit width,
so a 32-bit block will utilize 4 times the number of hardware
resources used by an 8-bit block.

C. OUTPUT MULTIPLEXERS

The output multiplexers define the output ports for the sorted
list of inputs, and operate in parallel in the Output MUX
Block shown at the right in Fig. 3. In the N-sorter general
design system, the code in the output mux block is quite
simple. Fig. 6 shows the 7-sorter Out_2 RTL output port
assignment. The other 6 output ports for the 7-sorter are
assigned in the same manner. These output port assignments
use C-style ternary or conditional syntax.

assign Out_2

(In_6_goes_to Out_2 ? 1In_6 :
(In_5_goes_to_ Out_2 ? 1In_5 :
(In_4_goes_to Out_2 ? 1In_4 :
(In_3_goes_to Out_2 ? 1In_3 :
(In_2_goes_to_ Out_2 ? 1In_2:
(?

In_1_goes_to_Out_2 Inl1: In®))))))

FIGURE 6. N-to-1 output multiplexer using ternary notation: 7-sorter
example.

Although perhaps not obvious, the simple output port
assignment shown in Fig. 6 specifies that one output mul-
tiplexer will be constructed for each bit of the output port.
Therefore, the output bit multiplexers scale with bit width.
A 32-bit port will use 4 times the number of hardware
resources that an 8-bit port uses.

Like any general N-sorter output assignment, the Fig. 6
assignment contains all N input values, as well as N—1
multiplexer select lines. The select line signals, which have
In_X_goes_to_Out_Y names, determine which input port

VOLUME 9, 2021

value goes to a particular output port. A maximum of 1 of the
select line signals can be true for a given output port Out_Y.

Note that no In_0_goes_to_Out_Y signal is needed. If none
of the other In_X_goes_to_Out_Y signals is true, then In_0,
by default, must be the input that goes to Out_Y.

In the 7-sorter results matrix shown in Table 3, the
In_O column is highlighted in green. Although the win-
ners total in this column indicates that In_0 will go to
Out_3, no In_0_goes_to_Out_3 signal is used in our sys-
tem. The In_O data is transferred to Out_3 because no other
In_X_goes_to_Out_3 signal is true.

D. OUTPUT MUX SELECT LINE SIGNALS

The definition of the In_X_goes_to_Out_Y multiplexer
select line signals is at the heart of the N -sorter design system,
as these signals implement the novel Comparison Counting
algorithm in our design methodology. These signals are gen-
erated in parallel in the Output MUX Select Line Signals
Block at the bottom left in Fig. 3.

For each input In_X, the comparison signals that determine
which output that In_X goes to are the N—1 comparison
signals in which In_X is compared to the other inputs. In the
7-sorter matrix Table 2, the 6 signals that determine which
output an input goes to are the 6 signals listed in the column
for that input.

There are permutations of the 1 and O states of
these N—1 comparison signals, and in our design system
each permutation becomes a product term in one of the
N In_X_goes_to_Out_Y SOP equations for that input. In
order to determine which In_X_goes_to_Out_Y equation a
product term belongs in, the number of winners in the prod-
uct term is totaled. Once again, a winner for an input is a
comparison result that indicates that input is > the input
it is compared to. The number of winners in an input’s
product term, when that product term is true, indicates the
output port that the input goes to. Once the number of
winners is determined, the product term is OR’d into the
In_X_goes_to_Out_{Total_of_winners} SOP equation.

Fig. 7 shows the full SOP equation for the 7-sorter’s select
line signal In_6_goes_to_Out_5. For In_6, all of the winners
are uncomplemented signal states. Each of the product terms
in Fig. 7 has 5 uncomplemented winners, and one comple-
mented signal state that is not a winner. If any product term
in this SOP equation is true, then 7-sorter input In_6 will go
to output Out_5.

2N71

wire In_6_goes_to_Out_5 =

(ge65 &% ge64 && ge63 8&& ge62 && ge6l R&& ! ge60
(ge65 &% ge64 && ge63 && ge62 && ! ge6l && ge60
(ge65 &% ge64 && ge63 && ! ge62 &&% ge6l && ge60
(ge65 &% ge64 && ! ge63 8&& ge62 && ge6l && ge60
(ge65 &% ! ge64 && ge63 && ge62 && ge6l && ge60
(! ge65 &% ge64 && ge63 & & ge62 &&% ge6l && ge60

NN NN

H

FIGURE 7. One of N#(N—1) N-sorter MUX select lines: 7-sorter example.

It should be clear that each product term in the Fig. 7 SOP
equation has exactly 5 winners. After some thought, it should

2581

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

also be clear that these are the only product terms for In_6 that
have 5 winners. This set of product terms is the necessary and
sufficient set that will transfer the In_6 value to Out_5.

There is one particular product term, which is highlighted
in Fig. 7, and the signal states in this product term match those
listed in the In_6 column in Table 3. Since only one of the
2% product terms can be true for a given set of inputs, only
one of the In_6_goes_to_Out_Y select line SOP signals can
be true as well. For the example data used in Table 3 then,
our 7-sorter design will ensure that In_6 goes to Out_5, and
no other In_6_goes_to_Out_Y select line signal, is true.

E. REVERSING THE OUTPUT SORTED ORDER

In the system described thus far, the stable sorted order
of the output list is non-increasing going from port
Out_(N-1) down to Out_0. A non-decreasing stable sorted
order is easily implemented without modifying the system
that has already been described. Fig. 8 shows how this is done
for a list of 5 values.

Input Swap Output Swap
na| a 3 Ina| o lows 7 1 |out_a
n3| 3 1 In3 g out3 4 3 |out_3
mn2| 7 7 2| o |louw2 3 74' 3 |out 2
n1| 1 3 1| 9@ ot 3 4 |out 1
In_0 3 4 In_0 n Out 0 1 7 |Out_O

FIGURE 8. Stable non-decreasing output list using non-increasing sorter.

If the non-increasing system is instantiated inside a higher
level SV module, an output list with a reverse sorted order
is implemented by reverse mapping the output ports of
the higher level module versus the output ports of the
base non-increasing sorter module. If only the output ports
are reverse mapped, the upper level output list would be
non-decreasing, but not stable. In order to create a stable
non-decreasing output list, the input list also needs to be
reverse mapped between the upper level port list and base
instantiated port list.

F. RANK ORDER N-FILTER DESIGN
An N-filter can be implemented directly from an N-sorter,
simply by removing the unused output ports, and any internal
logic that only drives those unused ports. N-median filters,
when N is odd, are designed in this manner. Any filter that
is created this way will have reduced hardware usage, but
will have essentially the same propagation delay as the full
N-sorter. All of the comparison result signals needed for a
full N-sorter are still needed for any associated N-filter, i.e.
none of the comparison result signals can be removed.
N-max and N-min filters can also be implemented by
simple removal of unused output ports and associated logic.
However, N-max and N-min filters have unique characteris-
tics that allow an alternate methodology to often be used for
their design. The unique characteristics are shared between
N-max and N-min filters, so the rest of this article will focus

2582

only on N-max filters. In general, the N-max filter discussion
will serve as an N-min filter discussion as well.

The In_X_goes_to_Out_Y SOP equations for the N-max
port have only 1 product term. Also, if the N-max
SOP equation for an input contains a particular compari-
son signal state, the other input which shares that compar-
ison signal will always have an opposite signal state in its
N-max equation. This can be seen in the compact 4-max
In_X_goes_to_Out_3 table that is shown in SV comments at
the top of Fig. 9.

//
// Signal states for Out_3 (max) single product terms:
//

// g88 88 8

// eee ee e

// 333 22 1

// 2106 10 ©

7

// In_3_goes_to Out_3 : 111

// In_2_goes_to Out_3 : @ 11

// In_1_goes_to_Out_3 : @ @ 1

// In_0_goes_to_Out_3 : @ e @

7/ i

//

// '1' represents true ; '@' represents false

//

assign Out_3 =

(ge32 2 (({ ge31, ge30 } == 2'b11) ? (In_3)
: (geloe ? In_1 : In_ O)

)
2 (({ ge21, ge20 } == 2'b11) ? (In_2)

: (gelo ? In_1 : In_0)

)
) s

FIGURE 9. 4-max compact table; 4-max output assignment using ge*
signals.

Because of this behavior, an N-max output port equation
can be constructed directly from the ge* comparison result
signals, using ternary notation. This type of equation, for a
4-max filter, is shown in the uncommented SV code at the
bottom of Fig. 9. The In_X_goes_to_Out_3 equation infor-
mation shown in the compact table is used to build the ternary
equation in the SV RTL, but the In_X_goes_to_Out_3 equa-
tions themselves are not implemented in the code.

IV. N-SORTER/N-FILTER FPGA IMPLEMENTATION

The RTL equations developed in accordance with the general
N-sorter/N -filter design system, introduced in Section III,
can be directly implemented in Xilinx FPGAs using the
Vivado synthesis tool. The resultant designs will be fully
functional, but they may not maximize speed of operation
and minimize resource usage. In this and following sections,
the general design system will be modified, as needed, in
order to produce speed and resource optimized N -sorter and
N-filter designs in FPGAs.

The FPGAs covered here are the devices in the Xilinx
7-Series, Ultrascale, and Ultrascale+ FPGA families. These
are the most recently released Xilinx FPGA families and
the main families in which designs are currently being
implemented. Ultrascale+ products are used in the Amazon

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

AWS EC2 F1 system as well as Xilinx’s own Alveo datacen-
ter acceleration cards.

In these families, the basic logic blocks used for our
N-sorter/N -filter designs are slices, such as the slice logic
block shown in Fig. 10 [19]. The Ultrascale and Ultrascale+
slice block is the full block shown Fig. 10. This slice has 8
6-input lookup tables (LUTs), and a set of 7 2-to-1 multi-
plexers which are used to combine LUT output signals. The
7-series slice has 4 LUTs and 3 2-to-1 multiplexers [20].
The bottom half of Fig. 10, without the MUXF9, shows the
design resources available for 7-series designs. All of the
designs detailed in this work only need the resources available
in the 4-LUT 7-series slice, so they can be implemented in
both 7-series devices and in devices in the Ultrascale and
Ultrascale+ FPGA families.

L[

G MUXF7_GH
—]

Ly MUXF8_EFGH
———————»

—— F MUXF7_EF
] E
6-Input MUXF9_ALL

LUTs :;D_.
—= D
— C MUXF7_CD

\:‘.D——>
MUXF8_ABCD

—= B MUXF7_AB
—— A

FIGURE 10. Xilinx FPGA slice utilizing 8 6-input LUTs: 7
2-to-1 multiplexers.

There are other hardware structures found in the slice
blocks, but not shown in Fig. 10. These additional structures
are not normally used in the design of N-sorters and N-filters,
and are not discussed here.

The general design and data flow diagram, Fig. 3, is mod-
ified for FPGA design and data flow, and is shown in Fig.11.
Each block in the Fig.11 diagram represents a group of slices
operating in parallel, and the number of slice groups in series

VOLUME 9, 2021

In_X Input Port Values

: " 2 Slices in Series
Comparison Signals Block

N*(N-1)/2

—————

1.0 2-sorter Equivalent

Input Comparison Signals) Out_Y
Propagation Dela L

l Pag v Output MUX Block Output
- - 3 Slices in Series Port

15t MUX Select Line Signals Block Values

One Multiplexer per
Output Value Bit

In_X_goes_to_Out_Y

1.5 2-sorter Equivalent
In_Xa_OR_Xb_goes_to_Out_Y "

Propagation Delay

l 4 Slices in Series Number of Multiplexers

2 MUX Select Line Signals Block =N * Bits_Per_Value
OR equation combinations of
In_X_goes_to_Out_Y signals

2.0 2-sorter Equivalent
Propagation Delay

FIGURE 11. FPGA LUT N-sorter design and data flow.

is listed for each of the possible paths that go through the
Comparison Signals Block. The possible paths through the
Comparison Signals Block are the slowest paths, the paths
that determine propagation delay. The fastest sorters are those
in which the slowest signals propagate through only 2 slice
groups, and the slowest sorters are those in which its slowest
signals travel through all 4 slice groups in Fig.11.

Our main objective, when adapting the general N-sorter
design methodology for use in the target FPGAs, has been
to focus on the speed of the N-sorter operation. This main
objective translates into minimizing the number of series
slices that an N-sorter’s slowest signals propagate through.
We estimate that the relative propagation delay of hardware
block A versus block B is proportional to the number of block
A’s series slices to that of block B. Starting in Section V, these
estimates will be compared to real propagation delay ratios
extracted from FPGA synthesis results.

A. TYPICAL N-SORTER FPGA DESIGN MODIFICATIONS

No FPGA modifications are needed for port list RTL, like
that shown in Fig. 4 in Section III-B. The port list is a simple
mapping of the N-sorter to the input and output lists, and
contains no logic in itself.

Also, there is no need to modify the definitions of the com-
parison result signals, as shown in Fig. 5 in the same section.
Each comparison operation is implemented by a hardware
vendor’s synthesis tool, and requires no input by a designer.
All of the comparison result operations are performed in
parallel in the Comparison Signals Block in Fig. 11.

FPGA modifications are typically required for the RTL
code in the Output MUX Block, versus the standard design
example shown in Fig. 6. When there are Output MUX
Block changes, changes are required for the output mux select
lines as well. The select line signal changes are implemented
in Fig. 11’s 1st MUX Select Line Signals Block and possibly
the 2nd MUX Select Line Signals Block. Discussion of these
needed modifications will be covered in the next sections.

B. FPGA N-SORTER IMPLEMENTATION DETAILS

Each bit of an output port value is implemented using the
minimal number of Fig. 10 slice resources. The 2-sorter
output bit multiplexer only requires 2 input bit values and

2583

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

1 comparison result signal, so it is easily implemented in a
single 6-input LUT. Actually, since 4 input bit values and
1 comparison result signal will fit in a 6-input LUT, the Xilinx
Vivado 2018.2 synthesis tool implements 2 output bits in each
2-sorter multiplexer LUT. A 3-sorter multiplexer requires
3 input bit values, and 3 comparison result signals, so it is
also easily implemented in a single 6-input LUT.

Since the 2-sorter and 3-sorter output bit multiplexers only
require sorter input data and comparison result signals as their
inputs, these two sorters have the minimum 2 series slices.
Refer to rows 1 to 5 in Table 4 for data covering the number
of series slice blocks used by each FPGA N -sorter.

TABLE 4. FPGA N-sorter Series Slices and LUT Usage Data.

Row Number of Values => 2 3 4 5 6 7 8 9
1 Comparison Signals Block X X X X X X X X
2 1st MUX Select Lines Block X X X X X X
3 2nd MUX Select Lines Block X X X X
4 Output MUX Block X X X X X X
5 Total FPGA Series Slices 2 2 3 3 4 4 4 a
6 N-Sorter Equivalent Stages 1 i 1.5 1.5 2 2 2 2
7 In_X goes_to_Out_Y LUTs 1 1 1 1 2 4
8 Output Mux LUTs per Bit 0.5 1 1 2 2 2 2 4

Row 5 contains the count of series slice block X’s in Rows 1 to 4
Row 6 =Row 5/(Row 5, Column 2)=Row 5/2

Data in highlighted rows is used for matching rows in Table 1
The 2-sorter has 2 bits in each Output Bit Mux LUT

It may seem that no In_X_goes_to_Out_Y signals are
needed for the 2-sorter and 3-sorter. However, what actually
happens is that the appropriate In_X_goes_to_Out_Y signals
do exist, but they are implemented inside the output bit mul-
tiplexer LUTs.

For any N-sorter larger than a 3-sorter, the simple type
of code shown in Fig. 6 will not automatically produce fast
and resource efficient FPGA output multiplexers. Therefore,
the output multiplexer code for larger sorters requires mod-
ification, which in turn requires changes to the associated
multiplexer select line signals as well.

The 4-sorter is the first N-sorter that requires output mul-
tiplexer modification. If the type of RTL code in Fig. 6
code is used for a 4-sorter, the output bit multiplexer would
require 4 data input bits and 3 In_X_goes_to_Out_Y select
line signals as inputs, 7 in all. So, this simple design could
not be implemented in a single 6-input LUT.

However, a straightforward modification is made so that
the 6-input LUT becomes a 4-to-1 multiplexer, with 2 mux
select lines, allowing a 4-sorter output multiplexer to be
fit into a single LUT. The functionality of the set of 3
In_X_goes_to_Out_Y signals required by the general design
system:

In_3_goes_to_Out_Y,
In_2_goes_to_Out_Y,
In_1_goes_to_Out_Y,

is captured in two OR signals:
In_3_goes_to_Out_Y Il In_2_goes_to_Out_Y,
In_3_goes_to_Out_Y Il In_1_goes_to_Out_Y,

2584

and these two OR signals become the 2 mux select lines for
the 4-sorter 4-to-1 single-LUT output multiplexer.

The select line modifications that are needed for 4-sorters
and larger sorters all involve the OR’ing of 2 or more
In_X_goes_to_Out_Y signals. For the 4-sorter and 5-sorter,
the creation of these OR signals is implemented in Fig. 11’s
1st MUX Select Line Signals Block, so these two sorters use
3 series slice blocks.

For sorters larger than a 5-sorter, the OR’ing of
In_X_goes_to_Out_Y signals is implemented in Fig. 11’s
2nd MUX Select Line Signals Block. These largest N-sorters
then have 4 series slices.

Row 5 in Table 4 contains the N-sorters’ series slice count,
and row 6 contains the row 5 data normalized to a 2-sorter’s
series slice block count, which is 2. Normalizing propagation
delay to a 2-sorter’s delay allows for direct comparisons
between an N-sorter and a comparable network of 2-sorters,
which has been the state-of-the-art norm. The equivalent
stage data in row 6 provides the data for the row with the
same name and highlight color in Table 1, which is where we
first estimated the speedup of our proposed N -sorters.

Row 7 in Table 4 lists the number of LUT resources
required for each In_X_goes_to_Out_Y select line signal.
Not shown in the table, each of the sorters which have select
line OR signals generated in the 2nd MUX Select Line Sig-
nals Block use at least N additional LUTs.

Row 8 in Table 4 lists data on the LUT resources used for
each output bit multiplexer. Rows 7 and 8 emphasize that
there is increased resource usage for the larger N-sorters,
especially a 9-sorter. This higher resource usage will be dis-
cussed in more detail in Section V.

In Sections III-B and I1I-C, it was noted that the number of
hardware resources used by logic in the Fig. 3’s Comparison
Signal Block and Output MUX Block scales with the bit
width of the numbers being sorted, which is also true for
those two blocks in Fig. 11. However, the signals generated
in Fig. 11’s 1st and 2nd MUX Select Line Signals Blocks do
not change with bit width. Because of this, the sorters which
utilize signals in at least one of these blocks, 4-sorters and
larger sorters, will tend to be more resource efficient than
2-sorters and 3-sorters as data value bit widths increase.

C. SINGLE-STAGE FPGA N-MAX FILTERS
As was shown in Fig. 9 in Section III-F, ternary equations
which directly use ge* comparison signals are used to define
an N-max value, which eliminates the need for intermediate
In_X_goes_to_Out_Y signals. The code in Fig. 9 creates a
fast 4-max filter. The ge32 signal in Fig. 9 separates the
Out_3 assignment into two sections. Each section has 3 ge*
signals and 3 input port signals, so each section can be fit
into a 6-input LUT. The outputs of the two LUTs become
the inputs to a MUXF7, as shown in Fig. 10, and signal
ge32 becomes the MUXF7 select line signal.

The 4-max design, as well as the 5-max design, now have
2 series slice blocks, versus 3 for the full 4-sorter and 5-sorter.
The 6-max to 8-max designs have 3 series slices, versus 4 for

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

the associated N-sorter. The reduced series slice values are
highlighted in row 5 of Table 5.

TABLE 5. FPGA N-max Series Slices and LUT Usage Data.

Row N Input Values => 2 3 4 5 6 7 9
1 Comparison Signals Blk X X X X X X X X
2 1lst MUX Select Line Blk X X X X
3 2nd MUX Select Line Blk X
4 Output MUX Block X X X X X X
g Total Series Slices E E E E E 5 g Z
6 N-Max Equivalent Stages 1 11 1 1.5 1.5 1.5 2
7 In_X goes_to_Out_Y LUTs 2 4 2 4
8 Output Mux LUTs per Bit 0.5 1 2 4 2 2 4 4

Row 5 contains the count of series slice block X’s in Rows 1 to 4
Row 6 =Row 5/ (Row 5, Column 2)=Row 5/2

D. SINGLE-STAGE FPGA 9-MEDIAN FILTER

Median N-filters can be designed for any odd N, but only
9-median FPGA filters will be discussed here. This focus is
primarily due to the ongoing importance in image processing
of using the medians of 3 x 3 pixel squares to filter out noise
from these pixel groups.

As was outlined in Section III-F, the single-stage 9-median
filter is constructed from the full 9-sorter by removing all of
the output ports except for the median port, and all internal
logic that only supports the removed ports. However, all
9x8/2 = 36 comparison result signals are still required.

V. FPGA N-SORTER AND N-FILTER RESULTS
In this section, speed and resource usage results are pre-
sented and discussed for N-sorters and N-filters imple-
mented in FPGAs, as wells as comparable 2-sorter and 2-max
N-networks implemented in the same FPGAs. The data
was obtained from synthesis results using Xilinx’s Vivado
2018.2 synthesis tool.

For each single-stage and network block design, four sets
of unsigned integer synthesis results were obtained:

« 8-bit values in 7-series product xc7z045{fg900-2.
o 32-bit values in the 7-series xc7z045 product.

o 8-bit values in Ultrascale+ xcvu9p-flga2577-3-e.
o 32-bit values in the Ultrascale4 xcvu9p product.

The xcvu9p product is the specific Ultrascale+ device used
in the Amazon AWS EC2 F1 system.

In order to obtain accurate propagation delay measure-
ments, the synthesized designs include both input and output
register banks. The register banks are not a part of the combi-
natorial sorting block designs. The input register bank simply
provides the drivers for all sorting block inputs, and the output
register bank provides the loads for all of the sorting block
outputs. The raw synthesis propagation delay results for the
single-stage N-sorters and N-filters analyzed in this article
are listed in the 4 tables in Appendix C.

Resource usage is measured by the number of LUTs in a
design. Resource usage values for a design are not product-
specific, but do vary with the bit width of the unsigned
integers. For example, an 8-bit 4-sorter design uses the same

VOLUME 9, 2021

number of LUT resources in both the xc7z045 and xcvu9p
devices. The 32-bit 4-sorter designs use significantly more
LUTs than the 8-bit designs, but the 32-bit LUT usage is the
same for the two devices.

A. N-SORTERS VS 2-SORTER N-NETWORKS RESULTS
Tables 9, 10, and 11 found in Appendix A contain raw synthe-
sis results for N-sorters and 2-sorter N -networks. In addition,
these tables contain N-sorter speedup and resource increase
ratios, versus the 2-sorter networks, which are derived from
the raw results.

The speedup and resource increase ratios have been used
to build the two plots in this section. Fig. 12 shows N-sorter
speedup and resource usage increase ratios for 8-bit FPGA
designs, in both the 7-series xc7z045 and Ultrascale+ xcvu9p
products. Fig. 13 shows the same data for 32-bit designs in
both products.

8-bit Ultrascale+, 7-Series N-Sorter Speedup ; Resource Usage Increase
4.0

—/— Estimated Speedup
—8—Actual 7-Series Speedup

—e—Actual Ultrascale+ Speedup
—O—Resource Usage Increase

soljey agesn 22unosay pue dnpaads 131405-N adeis-a|Suls

|
o

3 4 5 6 7 8 9
N of Single-Stage N-sorter or Best 2-Sorter Network ; 8-bit Values ; 4-LUT FPGA Slice

FIGURE 12. 8-bit N-sorter vs N-network speedup and resource increase.

32-bit Ultrascale+, 7-Series N-Sorter Speedup ; Resource Usage Increase
4.0

—A= Estimated Speedup
—8—Actual 7-Series Speedup

—e—Actual Ultrascale+ Speedup
—6—Resource Usage Increase

soljey agesn 22unosay pue dnpaads 13140s-N adeis-a|Suis

-4
&

3 4 5 6 7 8 9
N of Single-Stage N-sorter or Best 2-Sorter Network ; 32-bit Values ; 4-LUT FPGA Slice

FIGURE 13. 32-bit N-sorter vs N-network speedup and resource increase.

The dashed green curve in both figures is the estimated
N-sorter speedup, which was originally listed in Table 1 in
the introduction. This data has also been listed Table 4 in

2585

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

Section I'V-B, where the generation of this estimated data was
discussed. This green curve is identical in each figure.

The actual speedup values for the xc7z045 are shown in
the blue curves in Figs. 12 and 13, and the actual xcvu9p
speedups are shown in the brown curves in the figures.
The resource increase ratios, which are the same for the
xc7z045 and xcvu9p devices, are shown in red in the two
figures.

The Ultrascale+ device consistently shows better speedup
performance versus the 7-series device, particularly for 32-bit
designs. The estimated speedup values in both figures range
from 2.0 to 3.5, and the actual speedup values also tend to fall
in this same range.

The 32-bit resource usage curve is significantly lower than
the 8-bit curve, for the reasons discussed toward the end
of Section IV-B. The increase in resource usage ratios as
sorter size increases is in line with the data in rows 7 and
8 in Table 4 in Section IV-B. Note that the 32-bit 4-sorter
actually uses fewer resources than the comparable 2-sorter
4-network.

Some notable max frequency results, highlighted in yel-
low in Tables 9 and 10, are worth emphasizing. As shown
in these 2 tables, all of the N-sorters complete their sort
operation within one period in a 275 MHz 7-series system,
and within one 450 MHz period in an Ultrascale+ system.
None of the 2-sorter N-networks are able to meet these speed
targets.

As shown in Appendix A, the data in Tables 9 and 10
are useful for calculating N-sorter throughput values.
An Appendix A analysis shows that 10 8-bit 9-sorters, operat-
ing in parallel in the slower xc7z045 FPGA, can sort 3 billion
9-input lists in 1 second.

B. FPGA N-MAX VS 2-MAX NETWORK RESULTS

In Appendix B, raw synthesis results and associated ratio
calculations for single-stage N-max and 2-max N -network
filters are found in Tables 12, 13, and 14. Data from these
three tables is used to build the curves plotted in Figs. 14
and 15. These two figures are very similar to Figs. 12 and 13
displayed in Section V-A, except that the resource usage
curves in Figs. 14 and 15 are plotted against the new left axis,
which has red axis labels to match the red curves.

The curves in Figs. 14 and 15, like the earlier ones
in Figs. 12 and 13, indicate that the Ultrascale+ product has
better speedup than the 7-series device, and 32-bit curves
have improved speedup versus 8-bit curves. Once again,
the 32-bit resource increase ratios are lower than the 8-bit
ratios for larger N-max filters. The single-stage N -max filters
in Figs. 14 and 15 do show significant speedup versus the
2-max N-networks. The speedup ratios for the 8-bit and
32-bit designs, for both FPGAs, range from 1.6 to 2.6.

As shown in Appendix B, N-max filter throughput values
are easily calculated using the data in Tables 12 and 13.
Since max filters are used for max pooling of image fil-
ter data, it is also worthwhile to also present max filter
throughput values in terms of video frame rates. An analysis

2586

8-bit Ultrascale+, 7-Series N-Max Speedup ; Resource Usage Increase
5.0

a5

»
°

35

soney dnpaads xe|\-N 28e1s-3|8uls

05

—/— Estimated Speedup
—8—Actual 7-Series Speedup

=e—Actual Ultrascale+ Speedup
—O—Resource Usage Increase

Single-Stage N-Max Resource Usage Ratios

3 a 5 6 7 8 9
N of Single-Stage N-Max or Best 2-Max Network ; 8-bit Values ; 4-LUT FPGA Slice

Resource increase ratios are plotted in red against the left axis

FIGURE 14. 8-bit N-max vs network filters speedup and resource
increase.

32-bit Ultrascale+, 7-Series N-Max Speedup ; Resource Usage Increase

35

soney dnpaads xe|\-N a8e1s-3|Suls

05

—A— Estimated Speedup
—8—Actual 7-Series Speedup

—e—Actual Ultrascale+ Speedup
—6—Resource Usage Increase

Single-Stage N-Max Resource Usage Ratios

3 a 5 6 7 8 9
N of Single-Stage N-max or Best 2-Max Network ; 32-bit Values ; 4-LUT FPGA Slice

Speedups are plotted against the right axis.

FIGURE 15. 32-bit N-max vs network filters speedup and resource
increase.

in Appendix B indicates that a single 32-bit 9-max filter
processes 500 million 9-input lists per second in the xcvu9p
FPGA, which equates to a 4K frame rate of 500 frames
per second (fps).

C. FPGA 9-MEDIAN RESULTS

Our single-stage 9-median is compared here to two 9-median
networks which use a combination of 2-sorter/2-max/2-min
blocks. One of the networks is derived from the best 2-sorter
9-network, and the other uses a 3-way merge filter methodol-
ogy popular in the technical literature [21].

Table 6 lists single-stage vs network 9-median raw and
derived synthesis speed data for both the 7-series and
Ultrascale4 products, and Table 7 contains the common
resource usage data for both products. Our single-stage
9-median filter speedups range from 3.0 to 4.1.

As the xcvu9p 8-bit 9-median can operate at 540 MHz, one
9-median block will process 540 million pixels per second,
and 10 9-median blocks operating in parallel will process

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

TABLE 6. 2-sorter Network vs Single-stage 9-median Speed.

R Prop Delay 7-Series xc7z045 Ultrascale+ xcvu9p

o MaxFreq Single Best 3-way | Single Best 3-way
w and Speedup Stage Ntwrk Ntwrk Stage Ntwrk Ntwrk
1 FPGA Slices 4 14 16 4 14 16

2 8-b Delay 3.08 9.29 9.93 1.84 6.05 6.88
3 32-b Delay 3.32 10.71 11.55 2.01 7.30 8.31
4 8-b MaxFreq 324 108 101 543 165 145
5 32-b MaxFreq 302 93 87 499 137 120
6 Est. Speedup 1 3.5 4 1 3.5 4

7 8-b Speedup 1 3.01 3.22 1 3.29 3.74
8 32-b Speedup 1 3.23 3.48 1 3.64 4.14

Estimated Speedup: Ntwrk Series Slices / Single-Stage Series Slices
Actual 9-median Speedup: Network Prop Delay / Single-Stage Prop Delay
MaxFreq 7-Series Highlight : sort finishes within one 275 MHz clock cycle
MaxFreq Ultrascale+ Highlight : sort finishes within one 450 MHz cycle

TABLE 7. 2-sorter Network vs Single-stage 9-median LUT resources.

R Hardware Single Best 3-way
o Resource Stage 2-sorter 2-sorter
w Data 9-median Network Network
3 8-bit LUT Resources 210 232 196

4 32-bit LUT Resources 738 928 784

5 8-bit Increase Ratio 1 0.91 1.07

6 32-bit Increase Ratio 1 0.80 0.94

Single-Stage 9-median Increase Ratio : Single-Stage LUTSs / Network LUTSs

5.4 billion pixels per second. Since 9-median filters are
important in image processing, it is also worth presenting
throughput numbers in terms of video frames per second.

For a full 4K image size, with 3840 x 2160 pixels, there
are less than 9 million pixels per frame. As the xcvu9p
8-bit 9-median can operate at 540 MHz, a single 9-median
block will support a 4K frame rate of at least 60 fps, and
ten 9-median blocks operating in parallel will then support
a 4K frame rate of over 600 fps.

An 8-bit 9-median filter uses 210 LUTs, so 10 such filters
will use 2,100 LUTs. These 10 filters use 0.18% of the avail-
able 1,182,240 xcvu9p LUT resources. If higher frame rates
are needed, additional 9-median filters may be instantiated to
operate in parallel. The LUT resource usage is then 210x the
total number of 9-median filters, and the minimum frame rate
is 60x the number of 9-median filters.

D. FPGA N-SORTER AND N-FILTER VERIFICATION
Verification of the FPGA N-sorters and N-filters introduced
here has been implemented using SV simulations performed
with the Xilinx Vivado 2018.2 simulation tool. The simula-
tions were performed on the SV RTL code used to define the
single-stage blocks.

Verification of N-sorters is a topic that is worthy of further
study, but a fairly simple analysis is made here. If a test
vector set is created containing all possible NV permutations
of a set of N distinct values, e.g. 1 to N, then the vector
set will inherently include all possible input value order
permutations. Therefore, passing this vector set guarantees
that an N-sorter is correct.

The NV vector set is easy to create, although the number of
vectors in the set quickly becomes very large for increasing

VOLUME 9, 2021

values of N. The N = 2 vector set has 22 = 4 vectors,
the N = 3 vector set has 33 = 27 vectors, but the N = 9
vector set has 9° = 387, 420, 489 vectors. All of the FPGA
N-sorters from 2-sorters up to 9-sorters introduced in this
work have been verified with the appropriate NV vector set.
Table 8 shows the simulation input and output from a
3-sorter verification run using the 33 vector set. All 27 per-
mutations of the 3 input values are applied to the inputs, and
the output results show that the input permutation is always
correctly sorted. As is shown in the footnotes to Table 8, the
3 values for the 8-bit 3-sorter simulation are chosen so that
each bit of each port is tested for correct 0 and 1 operation.

TABLE 8. 3-sorter Simulation Output for 33 = 27 Test Vectors.

Out2 Out_l Ou 0 | In2 Inl In0O < Vec
240 240 240 | 240 240 240 < 0
240 240 15 | 240 240 15 < 1
240 240 0 | 240 240 0 < 2
240 240 15 |1 240 15 240 < 3
240 15 15 |1 240 15 15 < 4
240 15 0 | 240 15 0 < 5
240 240 0 | 240 0 240 < 6
240 15 0 | 240 0 15 < 7
240 0 0 | 240 0 0 < 8
240 240 15 | 15 240 240 < 9
240 15 15 | 15 240 15 < 10
240 15 0 | 15 240 0 < 11
240 15 15 |1 15 15 240 < 12

15 15 15 | 15 15 15 < 13
15 15 0 | 15 15 0 < 14
240 15 0 | 15 0 240 < 15
15 15 0 | 15 0 15 < 16
15 0 0 | 15 0 0 < 17
240 240 0 | 0 240 240 < 18
240 15 0 | 0 240 15 < 19
240 0 0 | 0 240 0 < 20
240 15 0 | 0 15 240 < 21
15 15 0 | 0 15 15 < 22
15 0 0 | 0 15 0 < 23
240 0 0 | 0 0 240 < 24
15 0 0 | 0 0 15 < 25
0 0 0 | 0 0 0 < 26

Non-increasing from Out_2 down to Out_0
integer to 8-bit : 240 — 11110000 ; 15 - 00001111 ; 0 — 00000000

Verification of an N -filter, particularly a single-output fil-
ter, presents its own challenges, since there is no output
order to check in a single-output filter. Simulation output
for a 3-max filter would look like Table 8, except that the
Out_1 and Out_0 columns would be missing.

There are two straightforward ways to ensure that N-max
simulation results are correct. In one method, a simple soft-
ware program could be used to check that, for example,
the Out_2 output from the 3-max simulation matches the
Out_2 output from a full 3-sorter simulation.

Alternatively, a full 3-sorter simulation could be run, but
the Out_1 and Out_0 data would not be written out to the log
file. The log files from the 3-max and modified 3-sorter sim-
ulations are then checked to make sure that they are identical.
The single-stage 9-median filter and all of the N-max filters
have been verified using this latter method.

2587

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

VI. CONCLUSION

A methodology has been presented for the design of fast, sta-
ble, single-stage N-sorters, with N >3, using a novel imple-
mentation of Comparison Counting in RTL equations. This
methodology has then been adjusted as needed in order to
implement fast N-sorters and N -filters in modern FPGA fam-
ilies. When compared to state-of-the-art 2-sorter networks,
the single-stage N -sorters are shown to have speedups rang-
ing from 2.0 to 3.5 when sorting up to 9 input values in the
target FPGAs. A throughput analysis shows that ten 8-bit
9-sorters, operating in parallel in the slower xcz7045 FPGA,
can sort 3 billion 9-input lists in 1 second.

The basic N-sorter system produces stable non-increasing
sorted output lists. It has been shown that this base sys-
tem, without modification, is easily used to implement stable
non-decreasing sorted output lists as well.

A modified design system has been presented which pro-
duces even faster N-max and N -min filters. The single-stage
N-max filters have speedup ratios of 1.6 to 2.6 versus the
best existing FPGA max network designs. When a 32-bit
xcvu9p 9-max filter is used for max pooling of 4K image
filter results, it can process over 500 million non-overlapping
9-input lists in one second, equating to a 4K frame rate of
over 500 fps.

Single-stage 9-median speedups range from 3.0 to 4.1, ver-
sus the state-of-the-art network implementations. Ten xcvu9p
8-bit 9-median filters, operating in parallel, can produce
5.4 billion output values per second, fast enough to support a
4K frame rate of over 600 fps.

The N-sorters have been verified using comprehensive
vector sets, with each set containing N N test vectors. N-filters
have been verified using the same vector sets, and then
comparing the N-filter output files to analogous files created
during N-sorter verification.

The single-stage designs described in this article all use
a 4-LUT slice group, and all are able to be implemented in
both 7-series and Ultrascale* devices. Since the Ultrascale*
devices have an 8-LUT slice, future efforts will focus on
optimizing single-stage N-sorter and N-filter designs which
utilize the full 8 LUTs in the Ultrascale* slice.

Although the single-stage sorting blocks are clearly faster
than comparable state-of-the-art networks using 2-sorters
and 2-filters, the FPGA designs we have introduced pro-
cess a maximum of 9 input values. The true worth of
these single-stage blocks will be realized in the future when
they are implemented inside novel multiway-merge sort-
ing networks, enabling the sorting of significantly larger
numbers.

APPENDIX A

N-SORTER VS N-NETWORK TABLES

Synthesis results for N-sorters and comparable 2-sorter
N-networks are found here in Tables 9, 10, and 11. Table 9
contains 7-series xc7z045 speed data, and Ultrascale+
xcvu9p speed data is found in Table 10. Resource usage data

2588

TABLE 9. 7-Series xc7z045 2-sorter N-network vs N-sorter Speed.

| Bw N: => 2 3 4 5 6 7 8 9
1 Ntwrk Stages 1 3 3 5 5 6 6 7
2 Ntwrk Slices 2 6 6 10 10 12 12 14
3 8-b Delay 1.62 3.94 4.22 6.71 6.81 7.97 7.97 9.35
4 32-b Delay 1.83 4.55 4.83 7.72 7.83 9.19 9.19 10.77
5 8-b MaxFreq 616 254 237 149 147 125 125 107
6 32-b MaxFreq 548 220 207 130 128 109 109 93
7 Nsrtr Slices 2 2 3 3 4 4 4 4
8 Equiv Stages 1 1 1.5 1.5 2 2 2 2
9 8-b Delay 1.62 1.68 2.13 2.59 2.78 2.87 3.05 3.14
10 32-b Delay 1.83 1.88 2.33 2.83 3.01 3.10 3.25 3.37
11 8-b MaxFreq 616 596 469 386 360 349 328 318
12 32-b MaxFreq 548 532 428 354 332 323 307 296
13 Est. Speedup 1 g 2 BES) %o < < .5
14 8-b Speedup 1 2.35 1.98 2.59 2.45 2.78 2.61 2.98
15 32-b Speedup 1 2.42 2.07 2.73 2.60 2.97 2.82 3.19

2-sorter Network Data in Rows 1-6 ; N-sorter Data in Rows 7-12
Propagation Delay in ns ; Max Frequency in MHz

Estimated N-sorter Speedup : Row 13 = Row 2/ Row 7

Actual N-sorter Speedup : 8-b =Row 3 /Row 9 ; 32-b = Row 4 / Row 10
MaxFreq Yellow Highlight : sort finishes within one 275 MHz clock cycle

TABLE 10. Ultrascale+ xcvu9p 2-sorter N-network vs N-sorter Speed.

| Rw N: => 2 3 4 5 6 7 8 9
1 Ntwrk Stages 1 3 3 S 5 6 6 7
2 Ntwrk Slices 2 6 6 10 10 12 12 14
3 8-b Delay 0.95 2.67 2.67 4.39 4.39 5.25 5.25 6.11
4 32-b Delay 1.13 3.21 3.21 5.29 5.29 6.33 6.33 7.34
5 8-b MaxFreq 1056 375 375 228 228 190 190 164
6 32-b MaxFreq 888 312 312 189 189 158 158 136
7 Nsrtr Slices 2 2 3 3 4 4 4 4
8 Equiv Stages 1 1 1.5 .5 2 2 2 2
9 8-b Delay 0.95 0.98 1.34 1.45 1.65 1.65 1.73 1.90
10 32-b Delay 1.13 1.12 1.47 1.61 1.81 1.81 1.86 2.06

11 8-b MaxFreq 1056 1020 749 690 607 607 579 528
12 32-b MaxFreq 888 897 682 620 553 552 537 486

13 Est. Speedup il 3 2 2.2 2.5 B 3 3.5
14 8-b Speedup 1 2.72 2.00 3.03 2.67 3.19 3.04 3.23
15 32-b Speedup 1 2.88 2.19 3.28 2.92 3.49 3.40 3.56

See Table 9 footnotes, except:
MaxFreq Yellow Highlight : sort finishes within one 450 MHz clock cycle

TABLE 11. 2-sorter N-network and N-sorter LUT Resource Usage.

[R N => 2 3 4 5 6 7 8 9
of 2-sorters 1 3 5 9 12 16 19 25
8-b Ntwrk LUTs 12 36 60 108 144 192 228 300

32-b Ntwrk LUTs 48 144 240 432 576 768 912 1200

8-b Nsrtr LUTs 12 36 60 136 177 252 376 738
32-b Nsrtr LUTs 48 144 228 496 645 840 1096 2034

N~o|os | wNE (W

8-b LUTs Ratio 1 1.00 1.00 1.26 1.23 1.31 1.65 2.46
32-b LUTs Ratio 1 1.00 0.95 1.15 1.12 1.09 1.20 1.70

2-sorter Network Data in Rows 1-3 ; N-sorter Data in Rows 4-5
Resource Increase Ratio : 8b = Row 4 / Row 2 ; 32b =Row 5/ Row 3

common to both products is found in Table 11. The speedups
and resource usage ratios from these three tables have been
used to create Figs. 12 and 13 shown earlier in Section V-A.

Rows 3 and 4 of the speed tables contain synthesis result
propagation delay numbers for the 2-sorter networks, when
implemented in the target FPGA, and rows 9 and 10 contain
the same type of raw data for corresponding N -sorters. Max
Frequency numbers, the inverse of the propagation delay
values, are listed in rows 5, 6, 11, and 12.

The highlighting in the Max Frequency rows of Table 9
indicates designs that complete their operation in one
275 MHz clock cycle, and the Table 10 highlighting marks
designs that finish their sort in one 450 MHz cycle. All of
the N-sorter max frequency values in rows 11 and 12 of both
speed tables are highlighted in yellow, while only the 2-sorter

VOLUME 9, 2021

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

TABLE 12. 7-Series xc7z045 2-max N-network vs N-max Filter Speed.

TABLE 13. Ultrascale+ 2-max N-network vs N-max Filter Speed.

| Rw N: => 2 3 4 5 6 7 8 9 | | Rw N: => 2 3 4 5 6 7 8 9 |
1 Ntwrk Stages 1 2 2 3 3 3 3 4 1 Ntwrk Stages 1 2 2 S 3 3 3 4
2 Ntwrk Slices 2 4 4 6 6 6 6 8 2 Ntwrk Slices 2 4 4 6 6 6 6 8
3 8-b Delay 1.0 2.74 2.88 4.01 4.01 4.15 4.15 5.29 3 8-b Delay 0.92 1.76 1.76 2.60 2.60 2.60 2.60 3.44
4 32-b Delay 1.80 3.14 3.28 4.62 4.62 4.76 4.76 6.10 4 32-b Delay 1.10 2.12 2.12 3.14 3.14 3.14 3.14 4.15
5 8-b MaxFreq 625 365 348 249 249 241 241 189 5 8-b MaxFreq 1082 568 568 385 385 385 385 291
6 32-b MaxFreq 555 318 305 216 216 210 210 164 6 32-b MaxFreq 907 472 472 319 319 319 319 241
7 N-max Slices 2 2 2 2 3 3 3 4 7 N-max Slices 2 2 2 2 3 3 3 4
8 Equiv Stages 1 1 1 1 1.5 1.5 1.5 2 8 Equiv Stages 1 1 1 1 1.5 1.5 1.5 2
9 8-b Delay 1.0 1.64 1.77 1.84 2.45 2.53 2.58 3.04 9 8-b Delay 0.92 0.95 1.02 1.08 1.34 1.41 1.47 1.81
10 32-b Delay 1.80 1.85 1.97 2.05 2.65 2.73 2.78 3.28 10 32-b Delay 1.10 1.08 1.17 1.23 1.48 1.54 1.60 1.95

11 8-b MaxFreq 625 608 565 543 409 396 388 329
12 32-b MaxFreq 555 542 507 489 378 367 360 305

11 8-b MaxFreq 1082 1055 982 929 745 711 681 552
12 32-b MaxFreq 907 923 853 815 674 651 623 514

13 Est. Speedup 1 2 2 3 2 2 2 2
14 8-b Speedup 1 1.67 1.62 2.18 1.64 1.64 1.61 1.74
15 32-b Speedup 1 1.70 1.66 2.26 1.75 1.74 1.71 1.86

13 Est. Speedup 1 2 2 3 2 2 2 2
14 8-b Speedup 1 1.86 1.73 2.42 1.94 1.85 1.77 1.90
15 32-b Speedup 1 1.96 1.81 2.56 2.11 2.04 1.96 2.13

2-max Network Data in Rows 1-6 ; N-max Filter Data in Rows 7-12
Estimated N-sorter Speedup : Row 13 = Row 2/ Row 7
Actual N-sorter Speedup : 8-b = Row 3/Row 9 ; 32-b = Row 4 / Row 10

values in rows 5 and 6 are highlighted. In short, all of the
N-sorters meet the speed targets, but none of the 2-sorter
networks do.

The estimated speedups in row 13 of the speed tables are
calculated from the ratio of the network series slices in row 2
to the associated N-sorter series slices in row 7. The actual
speedups are calculated as the ratios of network propagation
delays to those of the N-sorters.

The tan, pink, and green highlighted rows have identical
data in both speed tables, and the data and highlight colors
from these rows are used in Table 1 in the introduction. Also,
the data in rows 7 and 8 of the speed tables is used for the data
in rows 5 and 6 of Table 4 in Section I'V-B.

Table 11 contains resource usage data which is shared
by both products, as they both implement common designs
using 4-LUT slice groups. The data in the tan header row and
row 1 of Table 11, like the data in the tan header row and
row 1 of Tables 9 and 10, have been known for decades, and
are still valid today [5], [6].

The speed data in Tables 9 and 10 can be used for simple
throughput calculations. As listed in Table 9, an 8-b xc7z045
9-sorter can operate at 300 MHz, so it will process 300 million
9-input lists in 1 second.

Multiple 9-sorters can be instantiated to operate in parallel
in the FPGA. For example, if 10 9-sorters are instantiated in
the xc7z045, 3 billion 9-input lists will be sorted in 1 second.

Each 8-bit 9-sorter uses 738 LUTs, as is listed Table 11.
Ten 9-sorters then use 7,380 LUTSs, which is 3.4% of the
218,600 LUT resources available in the xc7z045. In general,
the number of xc7z045 8-bit 9-input lists that can be sorted
in one second equals 300e6 times the number of 9-sorters,
and the LUT resource usage will be 738x the number of
9-sorters.

APPENDIX B

N-MAX VS 2-MAX NETWORK TABLES

Synthesis result data for single-stage N-max and 2-max
N-network filters are listed in Tables 12, 13, and 14.
These three tables present the same types of data as did
Tables 9, 10, and 11 respectively in Appendix A. The three

VOLUME 9, 2021

See Table 12 footnotes

TABLE 14. 2-max N-network and N-max Filter LUT Resource Usage.

|R N => 2 3 4 5 6 7 8 9
1 # of 2-sorters 1 g 5 9 12 16 19 25
2 8-b Ntwrk LUTs 8 16 24 32 40 48 56 64
3 32-b Ntwrk LUTs 32 64 96 128 160 192 224 256
4 8-b N-max LUTs 8 20 40 72 83 110 156 210
5 32-b N-max LUTs 32 80 160 288 311 410 588 738
6 8-b LUTs Ratio 1 1.25 1.67 2.25 2.08 2.29 2.79 3.28
7 32-b LUTs Ratio 1 1.25 1.67 2.25 1.94 2.14 2.63 2.88

2-max Network Data in Rows 1-3 ; N-max Filter Data in Rows 4-5
Resource Increase Ratio : 8b =Row 4 /Row 2 ; 32b =Row 5/ Row 3

tables in this appendix provide the data for Figs. 14 and 15
in Section V-B.

As was shown Section V-C and Appendix A, the tables in
this appendix can be used for throughput speed and resource
usage calculations, this time for single-stage N-max filters.
For example, as listed in Table 13, a 32-bit 9-max filter in
the xcvu9p device operates within 1.95 ns, less than the 2 ns
period of a 500 MHz system. Therefore, a single 32-bit 9-max
filter will process 500 million 9-input lists in 1 second.

As mentioned in Section V-C, there are less than 9 million
pixels in a 4K frame. If a 9-max filter is used for max pooling
of distinct 9-pixel groups in a 4K frame, there will be less than
1 million max pooling result values for each frame. When
operating at 500 MHz, a single 9-max filter will then operate
on 4K data at over 500 fps.

A single 9-max filter uses 738 LUTs, which is 0.06% of the
available xcvu9p LUTs. In general, the total number of 4K
9-max pooling operations per second equals 500 million
times the number of instantiated 9-max filters, and the LUT
resource usage will be 738x the number of filters.

APPENDIX C
N-SORTER AND N-FILTER SPEED
Raw synthesis result propagation delay values are listed for
both N-sorters and N -filters in Tables 15 through 18:

o Table 15 — 8-bit xc7z045 7-series data

o Table 16 — 8-bit xcvu9p Ultrascale+ data.

o Table 17 — 32-bit xc7z045 7-series data

o Table 18 — 32-bit xcvu9p Ultrascale+ data.
These are the speed data values used throughout the results
plots, tables, and discussion. The data for full N-sorters is in
bold blue font in the tables.

2589

IEEE Access

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

TABLE 15. 7-Series xc7z045 8-bit N-sorter and N-filter propagation

delays.

2 slices
in Series

3 slices
in Series

ns H

4 slices
in Series

ns

5-max
4-max
3-sorter
3-max
2-sorter
2-max

S S Sy,

5-sorter
8-max
7-max
6-max
1.5x 2-sorter
4-sorter

NN NN

.591
.577
.525
.445
.435
.132

.0x 2-sorter

9-sorter
9-median
8-sorter
9-max
7-sorter
6-sorter

NMNWWWWwW

.246
.140
.082
.052
.044
.865
.776

TABLE 16. Ultrascale+ xcvu9p 8-bit N-sorter and N-filter propagation

delays.

2 slices
in Series

ns H

3 slices
in Series

ns H

4 slices
in Series

ns

3-sorter
3-max

2-sorter
2-max

.076
018
980
948
.947
.924

8-max
5-sorter
1.5x 2-sorter
7-max
6-max
4-sorter

.469
.450

.406
.342
.335

B e e e e

421

9-sorter

.0x 2-sorter

9-median
9-max
8-sorter
7-sorter
6-sorter

RERE P PR

.895
.894
.841
.813
.728
.648
.647

TABLE 17. 7-Series xc72045 32-bit N-sorter and N-filter propagation

delays.

2 slices
in Series

3 slices
in Series

ns H

4 slices
in Series

ns

5-max
4-max
3-sorter
3-max
2-sorter
2-max

PR e

5-sorter
8-max
1.5x 2-sorter
7-max
6-max
4-sorter

2
2
2
2
2
2

.825
779
o 138
727
.647
.334

.0x 2-sorter

9-sorter
9-median
9-max
8-sorter
7-sorter
6-sorter

3
3
3
3.
3
3
3

.652
.373
.315
277
.254
.098
.009

Estimates based on the 2-sorter propagation delay are highlighted in yellow.

TABLE 18. Ultrascale+ xcvu9p 32-bit N-sorter and N-filter propagation

delays.
2 slices 3 Sslices 4 slices
‘ in Series ns “ in Series ns “ in Series ns ‘
5-max 1.227
4-max 1.172
2-sorter 1.126 1.5x 2-sorter 1.689 .0x 2-sorter 2.252
3-sorter 1.115 5-sorter 1.613 9-sorter 2.059
2-max 1.103 8-max 1.604 9-median 2.006
3-max 1.083 7-max 1.537 9-max 1.947
6-max 1.484 8-sorter 1.862
4-sorter 1.467 7-sorter 1.812
6-sorter 1.808

Data for full N-sorters is displayed in bold blue font.

In each table, propagation delay values are listed
in 3 columns, based on the hardware block’s series slices:

o Leftmost column — 2 series slices.
o Middle column — 3 series slices.

o Rightmost column — 4 series slices.

Since the propagation delay of a hardware block is esti-
mated to be proportional to its series slices, estimated

2590

propagation delay values, based on the 2-sorter’s propagation
delay, are highlighted in yellow and are all placed in the
same row. In each column, the values are sorted by speed
and are placed relative to the highlighted values, so that their
relationship to the simple estimate can be easily seen.

REFERENCES
[1]

K. E. Batcher, “Sorting networks and their applications,” in Proc.
AFIPS, New York, NY, USA, 1968, pp. 307-314, doi: 10.1145/1468075.
1468121.

1. Skliarova and V. Sklyarov, “Reconfigurable devices and design tools,”
in FPGA-BASED Hardware Accelerators. Cham, Switzerland: Springer,
2019, pp. 1-38.

M. Zuluaga, P. Milder, and M. Piischel, ““Streaming sorting networks,”
ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 4, pp. 1-30,
May 2016, doi: 10.1145/2854150.

R. Chen and V. K. Prasanna, “Computer generation of high throughput and
memory efficient sorting designs on FPGA,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 11, pp. 3100-3113, Nov. 2017.

D. E. Knuth, The Art Computing Programming: Sorting Searching, vol. 3.
London, U.K.: Pearson, 1997.

M. Codish, L. Cruz-Filipe, T. Ehlers, M. Miiller, and P. Schneider-Kamp,
“Sorting networks: To the end and back again,” J. Comput. Syst. Sci.,
vol. 104, pp. 184-201, Sep. 2019.

D. Koch and J. Torresen, “Fpgasort: A high performance sorting architec-
ture exploiting run-time reconfiguration on fpgas for large problem sort-
ing,” in Proc. 19th ACM/SIGDA Int. Symp. Field Program. Gate Arrays,
New York, NY, USA, 2011, pp. 45-54, doi: 10.1145/1950413.1950427.
A. C. Bovik, Handbook of Image and Video Processing. New York, NY,
USA: Academic, 2010.

K. Claessen, M. Sheeran, and S. Singh, “The design and verification of
a sorter core,” in Advanced Research Working Conference on Correct
Hardware Design and Verification Methods. Cham, Switzerland: Springer,
2001, pp. 355-368.

Q. Gao and Z. Liu, “Sloping-and-shaking: Multiway merging
and sorting,” Sci. China Ser. E, Technol. Sci., vol. 40, no. 3,
pp. 225-234, Jun. 1997. [Online]. Available: http://engine.scichina.
com/publisher/ScienceChinaPress/journal/ScienceinChinaSeriesE-
TechnologicalSciences/40/3/10.1007/BF02916597

F. Shi, Z. Yan, and M. Wagh, “An enhanced multiway sorting network
based on n-sorters,” in Proc. IEEE Global Conf. Signal Inf. Process.
(GlobalSIP), Dec. 2014, pp. 60-64.

R. J. Nelson, “One level sorting network,” U.S. Patent 4628483,
Dec. 9, 1986.

C. Chakrabarti and S. Dhanani, “Median filter architecture based on
sorting networks,” in Proc. IEEE Int. Symp. Circuits Syst., Oct. 1992,
pp. 1069-1072.

C. Chakrabarti, “Sorting network based architectures for median filters,”
IEEE Trans. Circuits Syst. Il. Analog Digit. Signal Process., vol. 40, no. 11,
pp. 723-727, Dec. 1993.

R. Maheshwari, S. S. S. P. Rao, and P. G. Poonacha, “FPGA imple-
mentation of median filter,” in Proc. 10th Int. Conf. VLSI Design, 1997,
pp. 523-524.

M. A. Mohamed, ‘“Hardware sorter,” U.S. Patent App. 11554747,
May 1, 2008,

E. H. Friend, “Sorting on electronic computer systems,” J. ACM, vol. 3,
no. 3, pp. 134-168, Jul. 1956.

leee Standard for Systemverilog—Unified Hardware Design, Specification,
and Verification Language, Standard 1800-2017 Revision IEEE Std 1800-
2012, 2018.

UltraScale Architure Configurable Log. BlockUser Guide (UG574
Version 1.5), Xilinx, San Jose, CA, USA, Feb. 2017. [Online].
Available: https://www.xilinx.com/support/documentation/user_guides/
ug574-ultrascale-clb.pdf

7 Ser. FPGAs Configurable Log. Block User Guide (UG474 Ver-
sion 1.8), Xilinx, San Jose, CA, USA, Sep. 2016. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/user_guides/ug474
_7Series_CLB.pdf

A. Sanny and V. K. Prasanna, “Energy-efficient median filter on
FPGA,” in Proc. Int. Conf. Reconfigurable Comput. FPGAs (ReConFig),
Dec. 2013, pp. 1-8.

[2]

[3]

[4

=

[5]

[6

—

[71

[8]
[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]
(17]

(18]

(19]

(20]

(21]

VOLUME 9, 2021

http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/2854150
http://dx.doi.org/10.1145/1950413.1950427

R. B. Kent, M. S. Pattichis: Design, Implementation, and Analysis of High-Speed Single-Stage N-Sorters and N-Filters

IEEE Access

ROBERT B. KENT (Life Member, IEEE) received
the B.S. degree in physics from the University of
Notre Dame, Notre Dame, IN, in 1970, and the
M.S. degree in electrical engineering from The
University of Utah, Salt Lake City, UT, in 1983.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineer-
ing, The University of New Mexico.

He has worked for various semiconductor com-
panies: National Semiconductor from 1983 to
1990, Intel Corporation from 1990 to 1998, Philips Semiconductor from
1998 to 1999, and Xilinx, Inc., from 1999 to 2011. He then worked as an
Independent Contractor, also in the semiconductor field, from 2012 to 2017.
His main research interests include the design of single-stage N-sorters and
N-filters in hardware, particularly in FPGAs, and the use of these sorters and
filters in sorting networks or other hardware sorting systems.

VOLUME 9, 2021

MARIOS S. PATTICHIS (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in computer
sciences, the B.A. degree (Hons.) in mathematics,
the M.S. degree in electrical engineering, and the
Ph.D. degree in computer engineering from The
University of Texas at Austin, Austin, in 1991,
1993, and 1998.

He is currently a Professor with the Depart-
ment of Electrical and Computer Engineering, The
University of New Mexico (UNM), Albuquerque.
At UNM, he also serves as the Director of the Image and Video Processing
and Communications Laboratory (ivPCL). He holds the 2019-2022 ECE
Gardner Zemke Professorship for teaching. He is also a Fellow of the Center
for Collaborative Research and Community Engagement with the UNM
College of Education. His current research interests include digital image,
video processing, communications, dynamically reconfigurable computer
architectures, and biomedical and space image-processing applications.

Dr. Pattichis was a recipient of the 2016 Lawton-Ellis and the 2004 Distin-
guished Teaching Awards from the Department of Electrical and Computer
Engineering, UNM. For his development of the digital logic design labs
at UNM, he was recognized by Xilinx Corporation, in 2003, and by the
UNM School of Engineering’s Harrison Faculty Excellent Award in 2006.
He was the founding Co-PI (with Prof. Christodoulou) of the Configurable
Space and Microsystems Innovations and Applications Center (COSMIAC).
He was the General Chair of the 2008 IEEE Southwest Symposium on Image
Analysis and Interpretation (SSIAI), where he has served as the General
Co-Chair in 2020. He has also served as a Senior Associate Editor for
TEEE SiGNAL PROCESSING LETTERS, an Associate Editor for [IEEE TRANSACTIONS
oN IMAGE ProcessING and IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
and a Guest Associate Editor for the IEEE TRANSACTIONS ON INFORMATION
TECHNOLOGY IN BioMEDICINE. He is currently a Senior Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING.

2591

