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AM–FM Texture Segmentation in Electron Microscopic
Muscle Imaging
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Abstract—This paper describes the application of an amplitude modula-
tion–frequency modulation (AM–FM) image representation in segmenting
electron micrographs of skeletal muscle for the recognition of: 1) normal
sarcomere ultrastructural pattern and 2) abnormal regions that occur in
sarcomeres in various myopathies. A total of 26 electron micrographs from
different myopathies were used for this study. It is shown that the AM–FM
image representation can identify normal repetitive structures and sarcom-
eres, with a good degree of accuracy. This system can also detect abnor-
malities in sarcomeres which alter the normal regular pattern, as seen in
muscle pathology, with a recognition accuracy of 75%-84% as compared
to a human expert.

Index Terms—AM–FM modeling, electron microscopy, muscle imaging,
myopathies, texture analysis.

I. INTRODUCTION

Accurate diagnosis of neuromuscular disorders often requires exam-
ination of muscle biopsies with both light and electron microscopes.
Ultrastructural examination is useful for confirming the diagnosis of
specific disease entities, such as congenital, vacuolar, and metabolic
myopathies [1], [2]. Most of these myopathies are characterized by the
abnormal accumulation of various types of structures, such as nemaline
rods, tubular aggregates, or vacuoles. These structures disturb the very
regular and repetitive sarcomere pattern of myofibers. The sarcomeres
are the basic functional units of myofibers and the microscopical recog-
nition and precise description of abnormal structures provides the basic
criteria for classifying certain myopathies.

In recent years, in order to increase the diagnostic value of electron
microscopic observations, muscle morphometry has also been intro-
duced. Although this has been found useful for providing important
supplementary diagnostic information [3], it still relies on the precise
recognition of abnormal structures by a human expert. In order to as-
sist the human expert in this recognition task, a novel amplitude modu-
lation–frequency modulation (AM–FM) image representation method
has been developed for segmenting electron microscopic muscle im-
ages. The main objective is to develop a system capable of recognizing
structural abnormalities that affect the regular sarcomere arrangement
of muscle fibers.
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II. AM–FM M ETHOD

A. Skeletal Muscle Ultrastructure

Normal skeletal muscle consists of sarcomeres; these are micro-
scopic functional units that are being repeated horizontally, along
muscle fibers. In addition, the sarcomeres are vertically aligned and
contain thin filaments of actin and thick filaments of myosin. The
borders of the sarcomeres, are delimited by Z lines, which line up in
adjacent myofibrils giving rise to the typical striated appearance of
skeletal muscle [Fig. 1(a)]. The actin filaments are attached to the Z
line while the myosin filaments are centered in the sarcomere. The
actin filaments do not extend completely across the sarcomere, so the
H-zone, in the center of the A-band contains only myosin filaments.
This arrangement of myofilaments creates a repeating pattern of light
I-bands and dark A-bands [Fig. 1(a)].

B. Material

Muscle biopsies were obtained and processed for transmission elec-
tron microscopy according to standard protocols [4]. For this study,
electron micrographs obtained from a normal biopsy, and others ob-
tained from three different types of myopathy—outlined below—were
used.

• Normal: Fig. 1(b) illustrates an electron micrograph of normal
human skeletal muscle showing the regular sarcomere structure.

• Nemaline Myopathy:Fig. 2(a) illustrates an elecron micrograph
of a longitudinal section from skeletal muscle showing the pres-
ence of nemaline rods. These are abnormal structures which occur
in a number of myopathies but are pathognonomic for the diag-
nosis of nemaline myopathies. It should be noted that nemaline
myopathy is a rare disease, altogether ten electron micrographs
from different muscle fibers of two such cases were used.

• Tubular Aggregates Myopathy:Fig. 2(b) illustrates an electron
micrograph of a longitudinal section from skeletal muscle which
shows accumulation of tubular aggregates. These tubules accu-
mulate in sarcomeres causing disruption of the regular sarcomere
pattern. In this case, we used six electron micrographs from dif-
ferent muscle fibers of the biopsy from one patient.

• Mitochondrial Myopathy.:Fig. 2(c) illustrates an electron micro-
graph of a longitudinal section from skeletal muscle showing
accumulation of mitochondria. Although mitochondria are nor-
mally present in sarcomeres, the finding of mitochondrial aggre-
gates is often a characteristic and significant finding in mitochon-
drial myopathies. For this part of the work, ten electron micro-
graphs, obtained from four different cases, diagnosed as mito-
chondrial myopathies were used.

For each digitized electron micrograph, included in the study, the
pathological region was manually segmented by the expert using
MATLAB.

C. AM–FM Series

In electron micrographs of human skeletal muscle, sarcomere units
appear periodically arranged. Since these images are nearly periodic,
and we know that every periodic image is fully described by a two-di-
mensional (2-D) Fourier series, it is natural to consider a Fourier se-
ries expansion for describing these images. Naturally, the periodicity
is broken over abnormal regions. We, thus, modify the Fourier series
expansion to account for these variations. After the modifications, the
Fourier series becomes an AM–FM series. We will next develop these
points in a step by step approach.

0278–0062/00$10.00 © 2000 IEEE



1254 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 12, DECEMBER 2000

Fig. 1. (a) Annotated electron micrograph of human skeletal muscle. (b) Electron micrograph of normal human skeletal muscle (Magnification 10 000).Results
of AM–FM analysis of image in (b): (c) AM–FM amplitude histogram. (d) The result of thresholding the amplitude ata(x) < 20. (e) AM–FM instantaneous
frequency magnitude. (f) The result for thresholding the instantaneous frequency for low magnitudes atkr� (x)k < 0:046 cycles per image length. (g) The
result for thresholding the instantaneous frequency at higher magnitudes0:08 < kr� (x)k < 0:15 cycles per image length. (Thick bar= Z lines: sarcomere
boundaries. Thin bar= H-zone: mid-regions of sarcomeres).
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Let T1 be the horizontal length for a sarcomere unit, andT2 be the
vertical length of a sarcomere unit. Muscle images can be expressed as
periodic satisfying

Inormal(x1; x2) = Inormal(x1 + T1; x2 + T2) (1)

Hence, the image may be expanded into its Fourier series

Inormal(x1; x2) =
n;m

An;m exp j2�
n

T1
x1 +

m

T2
x2

(2)

In electron micrographs [see Fig. 1(b)], the sarcomere regions are mod-
eled as normal regions that have undergone slight local variations due
to biological activity and function. These slight variations are modeled
by a coordinate transformation from the normal image coordinates of
x1�x2 to the deformed image coordinates�1(x1; x2)��2(x1; x2).
Furthermore, subtle variations in the sarcomere image intensity are
modeled by multiplying the coordinate-transformed image by an am-
plitude functionasar(x1; x2). A regular sarcomere image is expressed
as [setx = (x1; x2)] [5]

Isar(x) = asar(x)Inormal(�1(x); �2(x))

= asar(x)
n;m
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� exp j2�
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is called the “instantaneous-frequency” of the FM function
expfj2�[(n=T1)�1(x) + (m=T2)�2(x)]g. To avoid confusion
among the indexes, we note that the phase subscripts refer to the vector
components (one for first, and two for second), while the double
indexes inAn;m refer to the AM–FM harmonics.

For an abnormal case, some of the image regions deviate signifi-
cantly from the regular sarcomere pattern. To account for these regions,
we introduce a new amplitude functionaabnormal and a new curvilinear
coordinate system 1 �  2. We rewrite (3) as

I(x) = asar(x)
n;m

An;m

� exp j2�
n

T1
�1(x) +

m

T2
�2(x)

+ aabnormal(x)
n;m

Bn;m

� exp j2�
n

T1
 1(x) +

m

T2
 2(x) (4)

where the first summation describes the image over normal regions,
while the second summation describes the image over the abnormal
regions. In (4), we note that at any given pixel, only one of the two am-
plitude functions is nonzero. If a pixel belongs to a normal region, then
the normal amplitude is nonzero:asar(x) 6= 0, while the abnormal
amplitude is zero:aabnormal(x) = 0. Conversely, if a pixel is part of
an abnormal region:asar(x) = 0; aabnormal(x) 6= 0.

Using (4), an arbitrary electron microscopic muscle image can be
described in terms of the amplitude functions:asar; aabnormal, the
phase functions:�1; �2;  1;  2 and the AM–FM series coefficients:

(a)

(b)

(c)

Fig. 2. AM–FM segmented electron micrographs: (a) nemaline myopathy, (b)
tubular aggregates myopathy, and (c) mitochondrial myopathy. (Magnification
10 000).

An;m; Bn;m. To segment the image into sarcomeres and abnormal
regions, we estimateasar; aabnormal, and the instantaneous frequency
magnitude functions:kr�1k; kr 1k. The instantaneous frequency
magnitudes associated with the second curvilinear coordinates:
kr�2(x)k andkr 2(x)k are not used. To estimate these functions,
we use dominant component analysis (DCA) [6]–[8] as described in
the following subsections.
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D. Isolating the Fundamental AM–FM Components

It is expected that most of the “local” power is captured in the funda-
mental AM–FM components. Without loss of generality, letn = 1, and
m = 0 be the indexes of the fundamental components that dominate:

A1; 0asar(x) exp j
2�

T1
�1(x)

B1; 0aabnormal(x) exp j
2�

T1
 1(x) (5)

in the sense that

jA1; 0j > jAn;mj for (n; m) 6=(1; 0)

jB1; 0j > jBn;mj for (n; m) 6=(1; 0): (6)

In practice, this assumption [see (6)] was satisfied for the cases that
were investigated in this study. To verify that the fundamental AM–FM
harmonic was actually computed, we compared the “instantaneous pe-
riod” of the estimated harmonics against the original electron micro-
scopic images. They were found to share similar wavelength values.

For simplicity, and without loss of generality, we will assume that
fundamental coefficientsA1; 0andB1; 0are both one (e.g., absorb the
first harmonic coefficients into the amplitude functions, and rescale the
rest of the harmonic coefficients).

E. Estimating the Fundamental AM–FM Component

The DCA algorithm is presented in this subsection as documented in
[6], [7]. The DCA algorithm is spatially adaptive. At every pixel in the
image, estimates of the amplitude, phase, and instantaneous frequency
are obtained from a Gabor channel filter that gives the maximum re-
sponse over a bank of channel filters.

In order to use the DCA algorithm to estimate the appropriate
AM–FM harmonics [as described by (5)], we rely on the funda-
mental assumption stated in (6). Then, at every pixelx0 belonging
to the normal regions, we expect the Gabor channel filter with a
frequency response closer to(2�=T0)r�1(x0) to dominate (in
the sense of capturing more power) than any other channel. On the
other hand, at every pixelx1 belonging to an abnormal region, we
expect the Gabor channel filter with frequency response closer to
(2�=T1)r 1(x1), to dominate. Hence, over the normal region,
the dominant Gabor channel estimates the fundamental sarcomere
harmonic: asar(x) exp[j(2�=T1)�1(x)]. Similarly, over the ab-
normal region, the dominant Gabor channel estimates the fundamental
abnormal harmonic:aabnormal(x) exp[j(2�=T1) 1(x)]. Hence, by
selecting the suitable Gabor channel at every pixel, DCA does not
depend on specific parameters of the image (e.g., it does not require
knowledge ofT1 andT2).

Next, we provide more details on the bank of Gabor channels, and
how each channel is used to estimate the parameters. First, a highpass
filter is applied that removes the low-frequency components. This is
accomplished by: 1) filtering the image with a lowpass filter that is
supported within a circular disk centered at the origin of the frequency
plane and 2) subtracting the lowpass filtered image from the original
image. A collection of Gabor (bandpass) channel filters are applied to
the new, [highpass filtered) image. (Hence, the low-frequency compo-
nents were significantly reduced (due to both highpass and bandpass
filtering)]. The Gabor channel filters are chosen so as to cover the 2-D
frequency plane. Over each channel, estimates of the instantaneous fre-
quency and amplitude are obtained using the equations given in [6]–[8].

F. Segmentation Based on the AM–FM Parameters

After estimating the fundamental AM–FM components, the esti-
mated AM–FM parameters are used to extract the abnormal regions

from its background. The same segmentation procedure is applied to
all the cases, but different AM–FM parameters were used for different
myopathies. The AM–FM parameters are: 1) the amplitude (for mito-
chondria and nemaline myopathy cases) and 2) the angle of the instan-
taneous frequency vector (for tubular myopathy cases). An initial seg-
mentation of the image is then computed using maximum likelihood.
The final segmented image is computed from the initial, binary image
using a morphological filter. We will next explain these two steps in
more detail.

First, we explain the maximum likelihood step. Letz denote the
AM–FM segmentation variable. Using the training set as ground truth,
we computep(1) denoting the probability of abnormal pixels,p(2) the
probability of normal pixels, and the conditional probabilities:p(zj1:)
andp(zj2). The probability density functions were averaged over the
training set. On the test set, an image pixel is classified as abnormal if
p(zj1)p(1) > p(zj2)p(2), else, it is classified as normal.

The initial segmentation image is then modeled as a noisy binary
image that needs to be denoised. Denoising is achieved via the use
of an alternating sequential filter (ASF) (to be defined next). To help
determine an appropriate ASF filter, we compute and then compare:
1) the average granulometric size distribution of the training set and 2)
the granulometric size distribution of the particular test image. We will
next define each morphological term in more detail.

A granulometric filter is defined by [9], [10]

M = (((((I �B) � 2B) � 3B) � 4B) � � �) � nB (9)

where
B structural element;
nB result ofn dilations ofB by itself;
� standard open operation.

We select a structural elementB that favors abnormal components that
extend horizontally (an ellipsoidal disk)

B = f(i; j)j(i=7)2 + (j=3)2 � 1g:

We compute the probabililty density function of the granulometric size
distribution using the filter described in (9) (see [9] and [10] for details).

We assume that the noise in the segmented image is due to small
structural components that do not belong to the abnormal regions.
Under this assumption, it can be shown that the optimal morphological
filter will be an ASF defined by [11], [12]

M = ((((((I �B) �B) � 2B) � 2B) � � �) � nB) � nB (10)

where� denotes the close operation. In (10), the value ofn needs to
be chosen so that the smaller, noisy structures are removed, while the
larger structures are preserved. To choosen, the granulometric size
distribution is computed for the test image. Thenn is chosen as the
number of times where the training set’s size distribution (where we
have dropped the word granulometric), first exceeds the test image’s
size distribution. Next, we explain why this approach works.

The test image is noisy and, hence, it has a larger number of small
components, while the average distribution from the training images
has a larger number of large components. This implies that the test
image’s size distribution dominates (maintains larger values than) that
of the training set’s, for the smaller, noisy components. Furthermore,
the training set’s size distribution dominates the one of the test image’s
for the larger components, where the signal is. It, hence, makes sense to
setn to the value where the training set’s size distribution exceeds the
test image’s size distribution, since this choice will most likely reject
the noise in the image.

The electron micrographs were separated into training and evalua-
tion (or test) sets, by running five, randomly selected, sets in each dis-
ease entity. In order to evaluate the performance of the AM–FM texture
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TABLE I
RECOGNITIONACCURACY OF THEAM–FM TEXTURE SEGMENTATION METHOD

segmentation method, its recognition accuracy was compared to that of
the human expert. For this purpose, the area recognized by the expert
was used as the “gold standard.” For each region, this was compared to
the area segmented by the system to calculate the system’s percentage
recognition accuracy. This value was computed as the mean of the five
evaluation sets in each type of myopathy.

III. RESULTS

A. Normal Muscle

In Fig. 1(b)–(g), the results of AM–FM analysis for the normal case
are displayed. For illustration purposes, on top of each image the hor-
izontal line depicts a single muscle fiber. The sarcomere boundaries,
Z lines, are represented by thick perpendicular bars, and the mid-sar-
comere regions, H-zones, are represented by the thin perpendicular
bars. The amplitude histogram of the AM–FM fundamental transform
is shown in Fig. 1(c). The result of thresholding the original electron
micrograph image [Fig. 1(b)] ata(x) < 20 is given in Fig. 1(d). To
help explain the results, it is noted that the amplitude of the AM–FM
harmonic defines the maximum range of the image intensity (�a(�)).
Fig. 1(d) displays the Z-bands as continuous dark vertical stripes (min-
imum intensity, also characterized by small amplitude values) while
the remaining sarcomere regions appear white (nearly maximum in-
tensities, also characterized by large amplitude values). The instanta-
neous frequency magnitude histogram is given in Fig. 1(e). It is noted
that the frequency instantaneous magnitude is inversely proportional to
the period of the locally repeating pattern (instantaneous wavelength).
Fig. 1(f) was thresholded for low instantaneous frequency magnitude
at kr�i; j(x)k < 0:046 cycles per image length. It highlights (white
stripes) the sarcomere centers corresponding to the mid-regions of the
A-bands, with the rest of the sarcomeres appearing black. Fig. 1(g)
was thresholded at larger instantaneous frequency magnitudes,0:08 <
kr�i; j(x)k < 0:15 cycles per image length. It is the composite of
Fig. 1(d) and (f) illustrating the boundaries as well as the mid-regions
of sarcomeres.

B. Nemaline Myopathy

Fig. 2(a) illustrates an electron micrograph of a case of nemaline
myopathy. It is observed that there is a sharp intensity variation between
the white background and the darker, nemaline regions. This results in
a large amplitude over the nemaline regions (to account for the large
variation in image intensity). Hence, the amplitude parameter was used
in the automated AM–FM segmentation procedure.

In this myopathy, two cases were investigated, from which ten
different regions were analyzed. Five of these regions were used for
training the system, and five for performance evaluation. The average
percentage recognition accuracy for the evaluation set of five trials
was 84% (see Table I).

C. Tubular Aggregates Myopathy

A case of tubular aggregates myopathy is shown in Fig. 2(b). Upon
close examination, it is observed that the tubular aggregates are domi-
nated by vertically repeating, thinly spaced patterns as opposed to the
horizontally repeating patterns of the normal background. This obser-
vation allows us to use the instantaneous frequency angle as the AM-
FM parameter for the automated segmentation procedure.

In this rare myopathy, six different regions were studied, using three
regions for training and three for evaluation. The average percentage
recognition accuracy for the five trials was 78% (see Table I).

D. Mitochondrial Myopathy

Fig. 2(c) illustrates a case of mitochondrial myopathy. As in the ne-
maline myopathy cases, it is observed that there is a sharp intensity
variation between the white background surrounding the mitochondria
and the black color density of the mitochondria themselves. As a result,
abnormal regions are characterized by a large amplitude to account for
the white to black and black to white transitions. This observation justi-
fies the use of the amplitude parameter for the automated segmentation
procedure.

Four cases of mitochondrial myopathy were used from which ten
regions were processed. Five of these regions were used for training and
five for performance evaluation. The average percentage recognition
accuracy for the evaluation set for five trials was 75% (see Table I).

IV. CONCLUDING REMARKS

The results of this study suggest that the application of AM–FM tex-
ture segmentation in electron microscopic muscle imaging can iden-
tify normal repetitive structures with a good degree of accuracy. Fur-
thermore, this AM–FM texture segmentation is capable of detecting
abnormal regions which disturb the regular sarcomere pattern of my-
ofibers. This is a novel approach since the task of recognizing abnor-
malities in myofibers is currently carried out manually by human ex-
perts. Although a small number of regions was studied, the system’s
performance recognition accuracy was found to be relatively good,
ranging from 75% to 84%.

More work is currently being carried out in order to make the
AM–FM recognition system more accurate. The wider applicability of
this technology will also enhance the cell biologist’s or neuropathol-
ogist’s ability to recognize and quantify similar changes that alter the
repetitive cellular patterns at the ultrastructural level. This AM–FM
method has been successful in segmenting sarcomere images and
in recognizing structurally abnormal areas, that characterize certain
myopathies.
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A Jini Service to Reconstruct Tomographic Data

Peter Knoll*, E. Gröller, K. Höll, S. Mirzaei, K. Koriska, and H. Köhn

Abstract—Distributed computing that uses dynamic networks will
change the way we work and communicate thanks to the interaction of
devices and services, that are automatically added and removed from
the network as needed. The Jini technology, which is built atop the Java
programming language, provides a homogenous view of the network
and extends the ability of code to migrate in Java. This software design
model simplifies the configuration and access to hardware devices and
software services in a network. Thus, it becomes possible to execute new
services without pre-installing software on client machines. This new
programming paradigm is especially important in medical applications,
where the reliable transmission of information is essential. This paper
demonstrates how single photon emission computerized tomography data
can be iteratively reconstructed using a Jini service.

Index Terms—Distributed computing, Jini, nuclear medicine, recon-
struction.

I. INTRODUCTION

The commercial software used in our medical imaging departments
is in general stored locally on image processing workstations. If such
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Fig. 1. Schematic presentation of the Jini concept.

a standalone application fails, processing terminates and remains un-
available until it is restarted. In contrast, distributed systems are able to
tolerate a limited number of failures, since they consist of multiple in-
dependent processes. A distributed system has the advantage of easily
supporting and coordinating remote access to patient data and software
services. Although distributed medical image processing and viewing
software uses the already existing client-server programming model
[1], it lacks an important feature: A distributed system has to be able
to adapt to network changes, which always will occur. In the future,
services and devices will be dynamically added to and removed from
computer networks, and it is necessary to adapt application software
to this situation. Built on top of Java, object serialization and remote
method invocation (RMI), the Jini application programming interface
(API) [2] aims to extend the benefits of object-oriented programming
to network enabling plugged-in devices and services to communicate
through interfaces. Because Jini does not require centralized adminis-
tration of available services, it is a truly distributed system [3].

Distributed Jini networks are customizable for a given user but can
also add themselves automatically when powered up, and remove
themselves when problems occur. This issue is important when
software systems are intended to be long-lived entities that can stay
running and responsive over a period of time, with little or no human
intervention.

This paper describes the application of a Jini service, using as an ex-
ample the reconstruction of single photon emission computed tomog-
raphy (SPECT) data. The advantage to the physician of such an appli-
cation is that he can change reconstruction parameters (such as number
of iterations) during runtime using his own computer equipment (stan-
dard PC) and without prior knowledge of the implementation of the
Jini service.
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