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Independent component analysis (ICA) is a statistical technique that estimates a set of sources mixed by
an unknown mixing matrix using only a set of observations. For this purpose, the only assumption is that
the sources are statistically independent. In many applications, some information about the nature of the
unknown signals is available. In this paper we show a method for incorporating prior information about
the mixing matrix to increase the levels of detection of responses to visual stimuli. Experimentally, our
method matches the performance of known ICA algorithms for high SNR and can greatly improve the per-
formance for low levels of SNR or low levels of signal-to-background ratio (SBR). For the problem of signal
extraction, we have achieved detection for signals as small as 0.01% (�40 dB SBR) in hybrid live/synthetic
data simulations. In experiments using a functional imager of the retina, measured changes in reflectance
in response to visual stimulus are in the order of 0.1–1% of the total pixel intensity value, which makes
the functional signal difficult to detect by standard methods. The results of the analysis show that using
ICA-P signal levels of 0.1% can be detected.

The approach also generalizes the standard Infomax algorithm which can be thought of as a special
case of ICA-P when the confidence parameter or a tolerance value is zero. For in vivo animal experiments,
we show that signal detection agreement over a range of confidence values parameters can be used to
establish reflectance changes in response to the visual stimulus.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In a recent paper (Barriga et al., 2007), the application of Inde-
pendent Component Analysis (ICA) in the detection of functional
responses from retinal activation due to visual stimulus has been
demonstrated. In this prior work, we quantified the values for
detection of functional signal in presence of noise. From these ear-
lier results we discovered a large decrease of performance at con-
siderable levels of noise (10 dB SNR) or low levels of functional
signal (�40 dB SBR). In this paper, we investigate the use of tempo-
ral prior information about the visual stimulus producing the func-
tional signal to increase sensitivity of the method in the presence
of high noise levels.

It has long been recognized that the retina’s optical properties,
when stimulated by visible light, are altered depending on what
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part of the near infrared (NIR) spectrum is being used to measure
the changes in reflectance (Ts’o et al., 2004, 2003; Hanazono
et al., 2007; Hofmann et al., 1976; Tsunoda et al., 2004; Abramoff
et al., 2006). A strategy to capture the signal from the stimulated
retina was originally devised by two groups, including ourselves
Kardon et al. (2002), Grinvald et al. (1986), and Nelson et al.
(2005), that included image and signal processing techniques for
extracting the intrinsic signal (Barriga et al., 2007). A number of
proposed sources of this functional signal, including photorecep-
tors (Kahlert et al., 1990), membrane depolarization (Stepnoski
et al., 1991), and altered metabolism have been attributed to the
changes in the local optical properties of the retinal tissue that
are detectable by measurement of light-scattering signals. In an ef-
fort to isolate the source of this signal, several ex vivo studies of
retinal samples (Yao and George, 2006) have measured stimulus-
induced intrinsic NIR signals that have been recorded from retinal
layers, including the inner retina and the region of the optic disc
(Ts’o et al., 2009).

In recent papers by our collaborators, Schallek et al. (2009a,b),
as well as publications by others, Tsunoda et al. (2004), it has been
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established that the intrinsic signal is likely to originate from the
outer retina, i.e., the photoreceptors. Schallek et al. performed
experiments to pharmacologically suppress activity in the inner
retina with intravitreal injections of tetrodotoxin (TTX) to suppress
the innermost retinal layers consisting of ganglion cells, their ax-
ons, and spiking amacrine cells (Hare and Ton, 2002) and injections
of 2-amino-4-phosphonobutyric acid (APB) blocked photoreceptor
input to the ‘‘ON” bipolar cells of the retina, while cis-2,3-Piperid-
inedi-carboxylic acid (PDA) suppressed the ‘‘OFF” bipolar cell re-
sponse and cell types downstream from this pathway (Slaughter
and Miller, 1983). When injected together, these drugs suppress
the stimulus-evoked potential at the level of the bipolar cell input,
while leaving photoreceptor function intact. The stimulus-evoked
intrinsic signal was observed to be as strong under these condi-
tions as under the control, non-pharmacologically altered state.
This leads to the conclusion that the intrinsic signal is significantly
driven by the photoreceptors stimulation.

The optical imaging device of retina function (OID-RF) has been
developed in an attempt to improve the objectiveness of the test
and the sensitivity for detection of damage and change over time.
The OID-RF is based on early research by Hill and Keynes (1949),
who linked the activity of the nerve cells with changes in their
optical properties. Grinvald et al. (1986) showed that changes in
the optical properties of the tissue could be used to study the func-
tional architecture of the cortex. Villringer and Chance (1997) used
near-infrared light to assess brain activity in humans non-inva-
sively through the skull. Kardon et al. (2002) reported the first de-
vice to directly image the human retina by recording changes in
700 nm light caused by retinal activation in response to a
535 nm stimulus. The authors of this paper have reported on an
optical imaging device of retina function (OID-RF) that has been
developed to improve the objectiveness and sensitivity of visual
testing (Kardon et al., 2002; Abramoff et al., 2006; Barriga et al.,
2007; Ts’o et al., 2003).

These findings motivated the development of a functional ima-
ger of the retina that can, using an instrument suitable for the clin-
ical environment, directly measure spatially resolved retina
function. The OID-RF is a non-invasive imaging device that mea-
sures the increase or decrease in retinal reflectance due to changes
in retinal metabolism thought to be a result of blood oxygen up-
take and capillary response due to neural activity resulting from vi-
sual stimulation of the photoreceptors in the human retina. The
functional measurements are stored as optical recordings (videos).
The hypothesis is that a visual stimulus causes the retina to alter
its level of blood volume and the ratio of oxygenated hemoglobin
(HbO) to deoxygenated hemoglobin (Hb). This has the effect of
altering the spectral reflectance characteristics of the retina and
in turn results in a change in the reflected intensity of the image
in the stimulated area.

In recent years, ICA has been applied to many biological related
problems such as electroencephalography (EEG) data analysis
(Makeig et al., 1996; Jung et al., 2000), and electrocardiogram
(ECG) data analysis (Choi et al., 1999). Schiessl et al. (2000) and
Stetter et al. (2000) applied ICA techniques to isolate changes on
the brain cortex of a macaque monkey due to visual stimulation.
ICA has also been used for motion correction in image sequences
by maximizing spatial independence (Liao et al., 2005; Milles
et al., 2008), and in perfusion sequence analysis (Juslin et al.,
2005). ICA has been applied extensively to detect functional brain
activation in functional magnetic resonance imaging (fMRI) exper-
iments (McKeown and Sejnowski, 1998; Calhoun and Adali, 2006).
Park et al. (2002) have applied ICA to model the role of the visual
cortex to locate salient areas in an image. They found that ICA
was useful in reducing the redundancy of data or signals from
the retina to the visual cortex. They defined the signals based on
traditional techniques which use color opponent coding and edge
detection to model the output from the retina. The authors of this
paper have previously reported on the application of ICA tech-
niques to isolate the changes produced in the retina due to visual
stimulation (Barriga et al., 2003a, 2003b, 2006, 2007).

In this paper we demonstrate the application of ICA with priors
and compare our results to standard ICA methods developed by
Barriga et al. (2007) for a set of in vivo data collected in an animal
study. The data was collected using the OID-RF instrument to ex-
tract the functional signal due to retinal stimulation. In our animal
study, we expect the major contributors to the signals will be due
to cardiac function, the respiratory cycle, and the evoked response.
We note that these components correspond to independent phys-
iological processes that should yield independent signals that are
appropriate for ICA. In our ICA algorithm (ICA-P), we investigate
the use of prior information about the temporal nature of the stim-
ulus that produces the functional signal. The priors of the mixing
matrix are modeled using information about the timing on which
the visual stimulus was applied to the retina. We measure the per-
formance of ICA-P on a set of two-dimensional spatiotemporal syn-
thetic simulations and then apply it to data collected in in vivo cat
experiments (Ts’o et al., 2003). We also compare the results of ICA-
P with other well-established ICA algorithms, such as Infomax (Bell
and Sejnowski, 1995) and JADE (Cardoso, 1997). We show that the
use of prior information leads to significant improvements, such as
allowing the detection of weak signals that are of 1% of the back-
ground noise.

This paper is organized as follows: Section 2 presents the ICA-P
method used in the analysis of the synthetically-generated data
and the live cat data. Section 3 describes the performance mea-
surements and synthetic simulation methods used to validate the
use of ICA-P in the data. Section 4 shows the results obtained by
applying the ICA-P techniques in anesthetized cat data. Discussion
of the results and conclusions are given in the last two sections.
2. Methods

2.1. Independent component analysis (ICA)

Let X ¼ ½x1ðtÞx2ðtÞ � � � xnðtÞ� be a vector of our observations, mod-
eled as a collection of random processes. We assume that the
observations are due to a linear mixture of signal components
S ¼ ½s1ðtÞs2ðtÞ � � � snðtÞ�. If we let A denote the mixing matrix, then

X ¼ AS ð1Þ

Then, using independent component analysis (ICA), we can esti-
mate both A and S using only the observations X, assuming that the
source signals are statistically independent (Hyvarinen et al.,
2001). In neuroscience applications it has been previously demon-
strated that by adding some knowledge about the experimental
procedures to which an individual is subjected, we can increase
signal detection. Particularly, in fMRI experiments, Calhoun et al.
(2005) and Calhoun and Adali (2006) incorporated information
about visual tasks as priors of the ICA mixing matrix. In their meth-
od, they constrain one or many of the components of the mixing
matrix to be close to a paradigm-derived time course. Similarly,
in this paper, we investigate the use of prior information of tempo-
ral characteristics of the visual stimulus.

2.2. ICA using priors

In our experimental procedures with retinal stimulation we
know the onset and offset of the visual stimuli which indirectly
gives us information about the mixing matrix. The Infomax algo-
rithm (Bell and Sejnowski, 1995) is modified so that we incorpo-
rate prior information at each update cycle. In the classic cocktail
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party problem for which ICA was originally developed, the tempo-
ral signals are considered to be the source signals, and spatial infor-
mation is contained in the mixing matrix. For our problem, the
spatial images are the source signals, which are combined tempo-
rally by the mixing matrix to form the resulting videos to be
analyzed.

Prior information is incorporated in the estimated mixing ma-
trix bA. The basic information that we want to incorporate is that
the response signal will have to follow the stimulus signal. In what
follows, let the ith signal represent the response signal. Starting
from Eq. (1), we then have that the ith column of bA is filled with
zeros before the response signal is expected to start, with ones
for the period of stimulation, and zeros for the post-stimulation
period. The rest of the columns are filled with zeros. We then cal-
culate the estimate of the unmixing matrix cW ¼ bA�1 and use it to
update the algorithm.

Starting from the Bell–Sejnowski form of the Infomax algo-
rithm, the negative log-likelihood function for the unmixing matrix
(W) is given by:

f ðWÞ ¼ �½N log jWj �
X

i;j

coshðWXÞ � NM logðpÞ� ð2Þ

where N and M are the dimensions of the data (temporal and spatial
data points), X is the vector of observations, and W is the estimated
unmixing matrix, which is the inverse of the estimated mixing ma-
trix (A). The gradient of the unmixing matrix is:

DW ¼ �½NðWTÞ�1 � tanhðWXÞXT � ð3Þ

Using the log-likelihood function and the gradient we can use
an optimization method to obtain an estimate of the unmixing ma-
trix. We used the BFGS method for unconstrained optimization. At
each iteration, a normalized cross-correlation (absolute NCC) mea-
sure between the estimated mixing matrix and the prior of the
mixing matrix is performed at zero lag. Then, the estimated mixing
matrix is updated as:
Fig. 1. NCC values for different tol
Wi ¼
Wi; NCC � t

Wi þ c Wi
p �Wi

� �
; NCC < t:

8<
: ð4Þ

where Wi is the ith column of the estimated mixing matrix, Wi
p is

the prior for that column and c is a confidence value parameter (be-
tween 0 and 1) for the prior information. If the correlation is lower
than a tolerance value t then the estimated unmixing matrix is up-
dated using the priors and the confidence parameter. In the optimi-
zation algorithm, we then invert the updated version of the
unmixing matrix to obtain an estimate of the mixing matrix.

The tolerance defines the threshold of uncorrelatedness be-
tween the estimated signal and the prior. If the NCC is lower than
this threshold, the estimated is corrected using the prior. Here, we
are not using the NCC to account for any lags between the stimulus
and the response. All lags are incorporated in the priors. It is
important to notice that we apply the prior to just one of the col-
umns of the estimated mixing matrix, corresponding to one of the
estimated signals, as we do not want to influence the estimation of
the remaining components of the mixing matrix.

We note that for the cases when c = 0 or t = 0, we have the ori-
ginal Infomax algorithm. Thus, the proposed algorithm represents
a generalization of the Infomax algorithm. The update in (4) can
also be interpreted from an optimization perspective. Essentially,
high values of NCC are used as an indication that the search for a
minimum is proceeding in the right direction. On the other hand,
low values for NCC are used to indicate that we may be at a local
(not global) minimum.
2.3. Parameter values

We have experimented with a range of values for confidence
and tolerance. We set up one-dimensional simulations to separate
a small sigmoidal signal from sinusoids using a sigmoid as the
prior. We selected these signals as an approximation of physiolog-
erance and confidence values.
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ical processes, such as the visual stimulus response, respiration,
and cardiac cycles. See Barriga et al. (2007) for detailed descrip-
tions of these signals.

Fig. 1 shows the normalized cross-correlation values between
the estimated signal and the original source for different signal-
to-noise ratios and for different confidence and tolerance parame-
ters. As expected, NCC values decrease as the noise increases. Ide-
ally, we want to use the parameters that give us high NCC at high
levels of noise (low SNR).

An important observation from Fig. 1 is that for very low SNR
values, we have the relative convergence of the NCC values over
a wide range of values of the confidence parameter. We have ob-
served this same behavior for detection in animal data. Thus,
agreement for several confidence values maybe considered for
helping to detect very weak signals. A high confidence value of
0.8 yields the best results over the majority of the noise levels.
On the other hand, it is also interesting to note that the low confi-
dence value of 0.2 also gave near optimal results for several SNR
values, while intermediate values did not. For tolerance, we can
see that t = 0.8 yields equal or better results as for the high value
of t = 0.9. For a tolerance value of 0.5 we note that the original Info-
max algorithm performs better than any of the ICA-P implementa-
Fig. 2. (a) Unmixed spatial source signals. (b) Nine frames from a synthetic video simula
the one affected by the sigmoid at 1% intensity, and it is not noticeable in the video.
tion, which makes us conclude that overall, the new method
requires high confidence and high tolerance values for detecting
existing signals in noise.
3. Performance measurements on synthetic data simulations

In the ICA literature there have been many efforts to quantify
the performance of the algorithms. Most of these efforts are con-
fined to one-dimensional data sets, with few focusing on 2-dimen-
sional data and almost none on three-dimensional video
applications. It is therefore very important to explore the perfor-
mance of the selected ICA algorithms in realistic simulations of
both general spatiotemporal data sets as well as more specific data
sets that are constructed from actual optical imaging data from the
OID-RF device (Kardon et al., 2002).

In this section, three different ICA methods are compared using
three-dimensional data sets. The performance of the algorithms is
tested under a range of signal-to-noise ratios (SNRs) using normal-
ized cross-correlation with known sources. In these simulations,
the sources have a temporal structure resembling some physiolog-
ical processes observed during optical stimulation of the retina.
tion generated using sources above. Noise is added with SNR of 10 dB. Source #1 is
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3.1. Synthetic video simulation

For this simulation a video is generated by mixing three images
(sources, Fig. 2a) with a mixing matrix that contains the temporal
structures of two sinusoids and a smoothed step function. The set-
up of the experiment is as follows: Three source signals are mixed
by a random mixing matrix. Noise is added at the determined level
of SNR to produce the mixtures. Those mixtures are the input to
the ICA algorithms. Fig. 2b shows sample frames of the generated
video sequence. The resulting estimated sources are compared
with the known sources to determine the accuracy of the esti-
mated signal.

The temporal signals are described as:

� Sinusoid #1: Period is 20 samples, peak-to-peak amplitude is 2
(units are arbitrary).
� Sinusoid #2: Period is 10 samples, peak-to-peak amplitude is 2.
� Smoothed negative rectangular function: This function is

formed as a union of two sigmoids and is intended to be a rudi-
mentary model of a biological response to the stimulation. This
signal can also be modified to simulate the BOLD response more
accurately, but for the purposes of the experiments a simple
approximation was chosen. The amplitude of this signal varies
in three different experiments: 10%, 5%, and 1% of the peak-
to-peak amplitude of the sources. The rectangular function is
on from frame 10 until frame 30.

Gaussian noise is added to the mixture of signals with an SNR
ranging from 40 dB to 0 dB. By calculating the variance of the ori-
ginal mixture we generate the appropriate noise level by varying
its variance such that:

SNR ðdBÞ ¼ 10log10
r2

S

r2
N

ð5Þ

where r2
S is the variance of the original mixture and r2

N is the var-
iance of the Gaussian noise.

After applying all the ICA algorithms to this new mixture (the
original video plus the noise), we compared the estimated sources
and mixing matrix with the originals using the absolute NCC value
Fig. 3. Temporal NCC results for the rectangula
at zero lag. The sources comparison tells us how accurate the spa-
tial localization is, whereas the mixing matrix comparison estab-
lishes the accuracy of the temporal reconstruction.

The results from the normalized cross-correlations between the
estimated sources and estimated mixing matrices are shown in
Fig. 3. The functional response is modeled as a step source with
three different amplitudes, 10%, 5% and 1% of the total intensity
of the images. We compare the results of ICA-P with the ones ob-
tained using Infomax (Bell and Sejnowski, 1995) and JADE (Car-
doso, 1997). The ‘‘temporal” results refer to the comparison of
the columns of the mixing matrices while the ‘‘spatial” results refer
to the comparison of the sources with their estimated
counterparts.

Fig. 3 shows how ICA-P achieves NCC values close to 1 even for a
low SNR. JADE matches the ICA performance for high SNR, but its
NCC values drop as the signal intensity is reduced. We are partic-
ularly interested on the performance of the algorithms on the
detection of the step function, as this represents the functional sig-
nal. From Fig. 3c, it is clear that ICA-P can be used to detect the
temporal signal at 0 dB (NCC > 0.8 for SNR = 0 dB). Among the stan-
dard ICA algorithms, JADE performs the best. JADE can also detect
this signal at levels of 30 dB or higher (see Fig. 3c). This suggests
that ICA-P can detect the temporal signals at a 30 dB lower level
than any of the other algorithms.

3.2. B. Live data with simulated visual stimulus

The next simulation involved the mixture of live cat data with a
synthetic stimulation (see Barriga et al., 2007 for more details on
the simulation setup). The live data comes from experiments per-
formed by Ts’o et al. (2003). We use the OID-RF recordings from an
unstimulated cat retina and add a synthetic stimuli at different of
levels of signal-to-background ratio (SBR). The synthetic stimuli
are obtained from actual recordings of stimulated cat retina and
synthesized so it can be easily manipulated in our simulation.

Using an unstimulated cat video as the baseline, the model of
the functional response is added. Sample frames from the resulting
video are presented in Fig. 4. The amplitude of functional response
that is added to the baseline video is defined by its Stimulus-to-
Background Ratio (SBR):
r signal on synthetically-generated video.



40 E.S. Barriga et al. / Medical Image Analysis 15 (2011) 35–44
SBR ðdBÞ ¼ 10log10
r2

S

r2
B

ð6Þ

where r2
S is the variance of the functional signal and r2

B is the var-
iance of the background.

Five videos were synthesized starting with the SBR ranging
from 0 dB to �40 dB at �10 dB intervals. The amplitude of the sig-
Fig. 4. Live data with simulated stimulus frames for �20 dB SBR. A vertical bar s

Fig. 5. Temporal and spatial correlation results for live data plus synthetic stimulation
Temporal correlation results using the temporal reference 2. (c) Spatial correlation resu
nal is directly proportional to the level of SBR. A 0 dB SBR indicates
that the variance of the functional signal is equal to the variance of
the video, whereas a �30 dB SBR means that the variance of the
functional signal is 0.1% of the variance of the video. As mentioned
before, the main objective of these experiments is to determine the
lowest amount of variation of the signal that can be detected by the
ICA and ICA-P algorithms because in the future we will need to per-
timulation can be seen starting on frame #6 and continuing until frame#14.

experiments. (a) Temporal correlation results using the temporal reference 1. (b)
lts using the reference frame.
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form experiments on human retinas, which have functional re-
sponses to visual stimulation that are one order of magnitude low-
er that those measured on cat’s retinas.

The results of the ICA-P and ICA algorithms were compared in
the temporal and spatial domains. The spatial domain comparison
was done by correlating the sources as estimated by each algo-
rithm with a ‘‘reference frame,” which is an image artificially gen-
erated by using a frame of pre-stimulated retina and the artificial
stimulus. For the temporal comparison, each row of the estimated
mixing matrix bA was correlated with the two expected simulated
functional responses, one with a negative response to the visual
stimulation due to functional changes, and the other with a posi-
tive response due to blood flow increase. These two responses have
been shown to have different delays with respect to the visual
stimulation. The positive response due to increase in blood flow
is noticed as soon as the stimulus starts, while the functional re-
sponse peaks about 3 s after the visual stimulation is started.

Fig. 5 shows the maximum absolute correlation values at zero
lag for (a) temporal reference #1, i.e. the blood flow response as
measured in the bright area of the retina, (b) temporal reference
signal #2, i.e. the functional response as measured in the dark area
of the retina, and (c) reference frame. Increased NCC values are ob-
served in the temporal cases (Fig. 5a and b) and a minor decrease
compared to the Infomax in the spatial case (Fig. 5c).
Fig. 6. (a) First frame analysis of a live cat data experiment #7 of 60. The frame
shown is the one with the highest contrast in all the video. (b) Spatial result of
applying ICA-P to the live cat data recording. (c) Temporal comparison of time
courses found with FFA and ICA-P. The visual stimulus is applied between frames 4
and 10.
4. In vivo cat data analysis

The data set selected for the cat data analysis consists of 60 vid-
eos with four different types of stimulation. All the videos (epoch)
have a duration of 10 s (s), with a frame rate of two frames per sec-
ond (fps). The stimulus paradigm consists on of a checkered pat-
tern with alternating polarity that is off for the first 2 s,
representing the baseline (pre-stimulus), on for 3 s of stimulation,
and off for 5 s of recovery (post-stimulus). The stimulus is applied
in different spatial regions at multiple orientations. Our data is
composed of 18 videos with vertical bar stimulation, 18 with hor-
izontal bar stimulation, three with spot stimulation (The pattern is
a small box), three with full field stimulation (the stimulus pattern
covers the whole field of view) and 18 with no stimulation (for
control purposes) for a total of 60 videos.

The videos were processed using ICA-P, Infomax, and first frame
analysis (FFA). FFA is a simple video processing technique where
the first frame of the sequence is removed from the remaining
frames in the video. Comparison of the three methods is described
below. Here, we do not report results from JADE since it produced
similar results as Infomax, as seen in Barriga et al. (2007).

When comparing the results of ICA-P with traditional analysis
such as FFA, we note a slight increase in the contrast of the de-
tected signal (Fig. 6a and b). As expected, a more compact temporal
response is found using ICA-P (Fig. 6c). We note that traditional
analysis is performed manually, having to identify the areas of sus-
pected activity and then extracting the temporal response by
selecting a region of interest.

The introduction of the ICA-P algorithm allows us to visualize
the functional signals for a variety of confidence and tolerance val-
ues. It is interesting to note from the synthetic simulations that in
several examples, different combinations of confidence and toler-
ance values yielded very similar results. For the real data set, due
to the lack of ground truth data, we are led to look for consistency
in our signal detection results.

We present a successful signal detection example in Fig. 7. The
original Infomax algorithm is shown in Fig. 7a. The time courses
from two different confidence and tolerance values are shown in
Fig. 7b and c. To normalize the detected signals, we first find the
absolute maximum signal value and then divide all other samples
by it. As a result, all signals have �1 as their minimum value. As we
see in Fig. 7a–c, the change due to visual stimulation can be ex-
tracted using any of the three algorithms. However, we also notice
that Infomax show a ‘‘dark” response on top of a ‘‘bright” response,
while the two ICA-P signals have these signals inverted. This is not
uncommon among ICA algorithms, due to the uncertainty principle
of ICA (Hyvarinen et al., 2001).

From the results in Fig. 7d, it is interesting to note that frame
#10 consistently gave the location of the lowest reflectance value.
This result is independent of the confidence parameter. We have
observed this behavior consistently, in agreement with a visual
inspection of the data sets. Beyond agreement in the minimum va-
lue, we also observe that the time-courses appear to cluster around
some central time course. While there is strong variability within
each cluster, it also appears that the time courses tend to oscillate
around each other.

Fig. 8 shows the spatial profile of the functional response. We
have noted that the region where the response to the stimulus is
seen is formed by two adjacent regions, one brighter and the other
darker than the rest of the image. We have noted variations of this
phenomenon in all cat videos, but thus far there is not a satisfac-
tory physiological explanation (Schallek et al. 2009a,b).

We present a typical example where no signal detection was
possible in Fig. 9. The lack of any consistency in the results is very
evident in Fig. 9d. There is no consistency in the location of the
peak values. There is no evidence of clustering in the results either.



Fig. 7. Spatial (a–c) and temporal (d) signals extracted from an in vivo experiment #13 of 60 with horizontal visual stimulation.

Fig. 8. Line intensity profile for a vertical stimulation experiment (video #7 of 60). The plot on the right corresponds to the average value in the X-direction from the red box
in the ICA-P (extracted) image of the left.
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The lack of any consistency suggests that the ICA-P algorithms con-
verged to different signals.

Overall, both the current ICA-P and original Infomax method
provided a detection rate of 86%. As outlined by Barriga et al.
(2007), the results do agree with visual inspection. The consistency
of the detected signals for a variety of ICA-P parameters also serves
to increase our confidence in the detection results. In addition, the
lack of responses found in experiments with no stimulation in-
creases our confidence that the ICA-P algorithm does not add ghost
signals from the priors.
5. Discussion and conclusions

The experiments presented in this paper have provided us with
an improved understanding of the limits of what ICA-P and ICA
algorithms can achieve to extract functional signals related to
BOLD responses, and how they can be improved. For the perfor-
mance of ICA-P in the 3-dimensional simulations, we note signifi-
cant improvement over conventional ICA algorithms.

The results of the temporal correlations for the synthetic video
simulations (Fig. 3) showed that detection was possible at a SNR le-
vel of 0 dB as opposed to 30 dB for JADE (see discussion at the end
of Section 3.1). The results on the hybrid simulations also showed
an improvement in the temporal correlations of about 0.05 in abso-
lute normalized cross-correlation. These results demonstrate the
power of introducing prior information about the temporal struc-
ture of the experiments.

The application of ICA-P and ICA algorithms to live cat record-
ings has produced a success rate of 86% in the detection of the
functional signals. The videos where no stimulation was detected
corresponded to vertical and horizontal stimulation close to the
edges of the field of view. Likely, these stimulus patterns did not
stimulate enough area in the retina to produce a measurable re-



Fig. 9. Temporal and spatial signals extracted from an in vivo experiment where no response to visual stimulus was applied. Notice that there is no false detection of
responses by the ICA algorithms.
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sponse and thus were missed by all the detection algorithms. The
results from the hybrid simulations show that we can estimate
changes as small as 0.01% (�40 dB) of the total intensity levels in
the images, which are at least two orders of magnitude lower than
the ones that appear to be present in the live cat data recordings.

We observed strong consistency in our signal detection results
for the cat videos. ICA-P results for difference confidence and toler-
ance parameters produced functional signals that produced the
largest stimulated response at the same frame number, while
exhibiting strong clustering characteristics. The consistency of
the detected signals for a variety of ICA-P parameters also serves
to increase our confidence in the detection results. In addition,
the lack of responses found in experiments with no stimulation in-
creases our confidence that the ICA-P algorithm does not add ghost
signals from the priors.

We believe that a system like the one presented in this paper
could find its way into the clinic, but more research is needed
about the origins of the signals and the effects of the visual stimu-
lation. In previous papers we have hypothesized that in a normal
retina the functional responses could be seen regardless of the po-
sition of the visual stimulation. An abnormal retina would have
areas of no response to the stimuli, and therefore a doctor could
do an assessment of the functionality of the patient’s retina in a
more quantitative way and without depending on the cooperation
of the patient.

Future work will be concentrated on automation of the confi-
dence and tolerance parameters. We also intend to add spatial
information on the priors, which at this point has not been possible
due to the high-dimensionality of the problem.

In conclusion, significant improvement over the Infomax algo-
rithm (which the ICA-P generalizes) has been achieved in the syn-
thetic simulations based on physiological data. Moreover, the ICA-
P outperforms conventional ICA algorithms for up to 30 dB on sim-
ulated experiments, proving to be a powerful tool for the analysis
of complex biological signals. In the problem of signal detection,
the requirement was to estimate signals as small as 0.1% of the
total intensity of the images, and we have achieved detection for
signals as small as 0.01% (�40 dB SBR) in the hybrid data simu-
lations.
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