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Multiscale Amplitude-Modulation
Frequency-Modulation (AM–FM) Texture Analysis

of Ultrasound Images of the Intima and Media Layers
of the Carotid Artery

C. P. Loizou, Member, IEEE, V. Murray, Member, IEEE, M. S. Pattichis, Senior Member, IEEE, M. Pantziaris,
and C. S. Pattichis, Senior Member, IEEE

Abstract—The intima-media thickness (IMT) of the common
carotid artery (CCA) is widely used as an early indicator of car-
diovascular disease (CVD). Clinically, there is strong interest in
identifying how the composition and texture of the media layer
(ML) can be associated with the risk of stroke. In this study, we
use 2-D amplitude-modulation frequency-modulation (AM–FM)
analysis of the intima-media complex (IMC), the ML, and intima
layer (IL) of the CCA to detect texture changes as a function of
age and sex. The study was performed on 100 ultrasound images
acquired from asymptomatic subjects at risk of atherosclerosis.
To investigate texture variations associated with age, we separated
them into three age groups: 1) patients younger than 50; 2) patients
aged between 50 and 60 years old; and 3) patients over 60 years
old. We also separated the patients by sex. The IMC, ML, and IL
were segmented manually by a neurovascular expert and also by a
snake-based segmentation system. To reject strong edge artifacts,
we prefilter with an AM–FM filterbank that is centered along the
horizontal frequency axis (parallel to the long axis of the IMC, ML,
and IL), while removing the low-pass filter estimates and frequency
bands with large, vertical frequency components. To investigate
significant texture changes, we extract the instantaneous ampli-
tude (IA) and the magnitude of the instantaneous frequency (IF)
over each layer component, for low-, medium-, and high-frequency
AM–FM components. We detected significant texture differences
between the higher risk age group of >60 years versus the lower
risk age group of <50 and the 50–60 group. In particular, between
the <50 and >60 groups, we found significant differences in the
medium-scale IA extracted from the IMC. Between the >60 and
the 50–60 groups, we found significant texture changes in the low-
scale IA and high-scale IF magnitude extracted from the IMC,
and the low-scale IA extracted from the IL. Also, we noted that the
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IA for the ML showed significant differences between males and
females for all age groups. The AM–FM features provide compli-
mentary information to classical texture analysis features like the
gray-scale median, contrast, and coarseness. These findings pro-
vide evidence that AM–FM texture features can be associated with
the progression of cardiovascular risk for disease and the risk of
stroke with age. However, a larger scale study is needed to establish
the application in clinical practice.

Index Terms—Amplitude-modulation frequency-modulation
(AM–FM), carotid, intima-media thickness (IMT), texture
analysis.

NOMENCLATURE

The following abbreviations were used in this study:
AM–FM: Amplitude-modulation frequency-

modulation.
an (x,y): nth Instantaneous amplitude (IA) function.
CCA: Common carotid artery.
CVD: Cardiovascular disease.
DCA: Dominant component analysis.
DV: Difference variance.
GSM: Gray scale median.
HIA: High instantaneous amplitude.
H2-D : 2-D Hilbert transform.
HIF: High instantaneous frequency.
∇φn (x, y): nth Instantaneous frequency (IF) function.
IW: Instantaneous wavelengths.
IMCGSM: Intima media complex gray scale median.
IL GSM: Intima layer gray scale median.
IL: intima layer.
IMC: Intima-media complex.
IMT: Intima-media thickness.
IA: Instantaneous amplitude.
IF: Instantaneous frequency.
|IF|: Instantaneous frequency magnitude.
IQR: inter-quartile range.
ILT: Intima layer thickness.
IM: Intima media.
I(x,y): Acquired ultrasound image.
LPF: Low-pass filter.
LIA: Low scale instantaneous amplitude.
LIF: Low scale instantaneous frequency.
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Fig. 1. Anatomical locations of ultrasound image components for atheroscle-
rosis. The IMC in b), ML in c), and the IL in d), have been extracted using
automated segmentation as described in [5], [7], and [25]. The ML is defined as
the layer (band) between the IM and the media–adventitia interface (band Z6).
CCA ultrasound indicating the location of the IMC at the far wall, segmented
IMC (IMT = 0.79 mm, left column), segmented ML (MLT = 0.32 mm, middle
column), and segmented IL (ILT = 0.47 mm, right column).

MLT: Media layer thickness.
MIA: Medium scale instantaneous amplitude.
MIF: Medium scale instantaneous frequency.
ML: Media layer.
MLGSM: Media layer gray scale median.
NS: Non-significant differences.
SD: Significant differences.
STD: Standard deviation.
SS-TEL: SS-Texture energy from SS-kernel.
φn (x, y): nth Instantaneous phase (IP) function.

I. INTRODUCTION

THE World Health Organization ranks cardiovascular dis-
ease (CVD: coronary artery disease, cerebrovascular dis-

ease, and peripheral artery disease) as the third leading cause
of death and adult disability in the industrial world [1]. In the
United Sates alone, 80 million American adults have one or
more types of CVD, of whom about half are estimated to be
age 65 or older. It is estimated that by 2015, there will be 20
million deaths due to atherosclerosis that will be associated with
coronary heart disease and stroke.

Atherosclerosis causes enlargement of the arteries and thick-
ening of the artery walls. It begins early in life and silently
progresses until clinical events appear. Clinically, the IMT is
used as a validated measure for the assessment of atheroscle-
rosis [2] (see Fig. 1). It was proposed that not only the IMT,
but also the ML, its thickness [3]–[6], and its textural charac-
teristics [6]–[9] may be associated with the risk of developing
stroke. Chambless et al. [10] showed that the IMT is a quanti-
tative indicator of the extent of atherosclerosis, and therefore,
IMT could be positively associated with an incident of stroke.

We illustrate the IMC, ML, and the IL in Fig. 1(a). As shown in
Fig. 1, the IL is a thin layer, the thickness of which increases with
age, from a single cell layer at birth to 250 μm at the age of 40 for
nondiseased individuals [11]. In ultrasound images, the ML is
characterized by a hypoechoic region, predominantly composed
of smooth muscle cells, enclosed by the intima and adventitia

layers (see Fig. 1, band Z6) [2], [6]. Earlier research [3] showed
that the MLT does not change significantly with age (125 μm
< MLT < 350 μm). In a study by Loizou et al. in 2009, the
IMT, MLT, and ILT were estimated from 100 ultrasound images
from 42 female and 58 male asymptomatic subjects. There were
subjects of ages between 26 and 95 years old, with a mean age
of 54 years. We measured the thickness to be: 1) IMT median
of 0.66 mm with an IQR of 0.18 mm; 2) MLT median 0.23 mm
with IQR of 0.18 mm; and 3) ILT median of 0.43 mm with IQR
of 0.12 mm [5].

Loizou et al. in 2009 [9], found that: 1) there are significant
differences between some texture features extracted from the
IL, ML, and IMC (mean, GSM, STD, contrast, DV, periodicity);
2) some of the texture features can be associated with the in-
crease (difference variance, entropy) or decrease (GSM) of pa-
tient’s age; 3) the GSM of the ML falls linearly with increasing
MLT and with increasing age; 4) the GSM of male subjects is
larger than that of female subjects; and 5) male and female sub-
jects may be better distinguished using texture features extracted
from the IMC.

Our objective is to investigate the progression of textural
characteristics of the IMC, ML, and IL of the CCA, through the
use of new multiscale AM–FM methods [12]–[17] and combine
them with standard texture features.

An input image f (x, y) is expressed as the sum of its AM–FM
components given by [15]

f (x, y) =
N∑

n=1

an (x, y) cos φn (x, y) (1)

where an (x, y) denote slowly varying IA functions, φn (x, y)
denote the instantaneous phase (IP) components, and n =
1, 2, . . . , N indexes the different AM–FM components. The
AM–FM decomposition of (1) can be viewed as a generalization
of the Fourier series decomposition in that it allows both the am-
plitude and phase functions to spatially vary. In particular, for
each AM–FM component an (x, y) cos φn (x, y), we define the
instantaneous ∇φn (x, y), and the magnitude of the IF, given by
‖∇φn (x, y)‖. For texture analysis, we are interested in using
both the IA and the IF from different frequency scales. Here, we
use the term frequency scales to refer to different ranges of the
IF magnitude.

AM–FM models have been used in a variety of applications
including image reconstruction [12], image retrieval [18], and
video processing, such as motion estimation and video analy-
sis [19]. A theoretical framework for understanding the role of
multidimensional frequency modulation was reported in [20].
In [13], AM–FM texture features were compared to the clas-
sical texture features for the classification of carotid plaque
ultrasound images. The study involved the use of 274 images
(see also [21], 137 asymptomatic and 137 symptomatic). In
this study, the AM–FM features performed slightly better than
the classical texture features. A combination of the three-scale
AM–FM representations produced the best results, reaching a
classification success rate of 71.5%.

The basic multiscale AM–FM decomposition consists of esti-
mating the IA, the IP, and the instantaneous frequency (IF) over
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different scales. The term “instantaneous” refers to the fact that
all AM–FM features vary as a function of pixel location. The
promise of AM–FM methods can be summarized in that [17]:
1) they provide physically meaningful texture features [(e.g., IF
in cycles per millimeter (mm)], over multiple scales, at pixel
level resolution; 2) textures can be reconstructed from AM–
FM components; 3) we can extract AM–FM decompositions
for different frequency coverage; and 4) we have the recent de-
velopment of robust methods for AM–FM demodulation (see
examples in [15], [22]). We will elaborate on the AM–FM ad-
vantages in Section II.

In [4], a method was presented for quantifying the reflectivity
of the ML of the distal CCA. The GSM of the IM layer gave
the earliest change representing atherosclerotic disease in the
arterial wall that can currently be imaged in vivo. In [23], the
authors investigated the early structural changes of the CCA
in familial hypercholesterolemia. Textural characteristics ex-
tracted from the IMC were found to be significantly different
between patients with and without hypercholesterolemia. In [8],
the authors reported on the properties of the GSM of the IMC
from a random sample of 1016 subjects aged exactly 70. They
found that the GSM of the IMC of the CCA is closely related to
the echogenecity in overt carotid plaques.

While there are several studies reported earlier suggesting
that the instability of the carotid atheromatous plaque can be
characterized from B-mode ultrasound images [6], [21], we
have not found any other studies reported in the literature, where
the AM–FM characteristics (or any other multiscale features)
of the IMC, ML, and IL have been shown to be associated
with the risk of stroke. In [6] and [21], the echogenecity in
atherosclerotic carotid plaques was evaluated through the GSM,
where as in [9], the IMC, ML, and IL were characterized based
on texture feature analysis. Visual inspections of the IMC in the
CCA reveal that a great variation in echogenecity does exist.
However, the usefulness of this information has not yet been
studied.

II. MATERIALS AND METHODS

A. Ultrasound Images Acquisition

A total of 100 B-mode longitudinal ultrasound images of the
CCA were recorded using the ATL HDI-3000 ultrasound scan-
ner (Advanced Technology Laboratories, Seattle, USA). The
images were recorded at the Cyprus Institute of Neurology and
Genetics in Nicosia, Cyprus. The recordings were carried out in
agreement with the Cyprus national bioethics committee rules
on clinical trials, and after patient’s written consent. For the
recordings, we used a linear probe (L74) with a recording fre-
quency of 7 MHz [24]. Images were acquired with the subject’s
head rotated by 45◦ away from the study side. A single longitu-
dinal image was captured at the distal end of the CCA, during
the diastolic phase of a cardiac cycle. All captured images were
revealing optimal visualization of the IMC of the far wall and
the near wall of the CCA at the same time, thus, corresponding
to a midline horizontal longitudinal representation of the CCA
walls.

During image acquisition, the sonographers varied spatial
resolution to provide optimal imaging at different depths [5], [9].
However, without standardizing image resolution, the estimated
AM–FM components would not be comparable. To see this, note
that continuous-space image frequencies are expressed in cycles
per milimeter, and unless we have a common spatial resolution,
the estimated digital frequencies would correspond to different
continuous-space (analog) frequencies. As a result, we then had
to use bicubic spline interpolation to resize all digital images to
a standard pixel density of 16.66 pixels/mm. Here, we note that
most images were acquired near this target resolution. In other
words, we made small corrections to spatial resolution.

The images were also intensity normalized, as described
in [25] and [26], where a manual selection of blood and ad-
ventitia performed by the user of the system is required. The
gray-scale-intensity normalized image was obtained through al-
gebraic (linear) scaling of the image by linearly adjusting the
image so that the median-gray-level value of the blood was 0–5,
and the median gray level of the adventitia (artery wall) was
180–190 [26], [27].

The images were recorded from 42 female and 58 male
asymptomatic patients. These subjects had not developed any
clinical symptoms, such as a stroke or a transient ischemic at-
tack. The primary-care physicians informed the subjects of our
stroke-prevention research study.

Overall, patient’s ages varied between 26 and 95 years, with
a mean age of 54 years. The images were partitioned into three
different age groups. In the first group, we included 27 images
from patients, who were younger than 50 years old. In the second
group, we had 36 patients, who were 50–60 years old. In the
third group, we included 37 patients who were older than 60
years.

Clinically, no significant changes are anticipated in the IMT
before the age of 50 [28], [29]. Stroke incidences in this age
group are more frequently associated with other causes than the
usual cardiovascular risk factors (hypertension, hypercholes-
terolemia, smoking, etc.), like cardiac source of emboli, genetic
factors, and others. Between the ages of 50 and 60, the age
borderline for the young (<50 years) and the adult (>60 years)
ages, a subtle increase in IMT can be demonstrated and IMC
textural changes can be initially observed. Above the age of
60, IMT increases and changes in the IMC are more evident.
Moreover, most of the stroke incidences in this age group are
associated with the carotid atherosclerosis disease.

B. Manual Measurements

A neurovascular expert (neurologist) manually segmented
(using the mouse) the IMC [25] the ML, and IL [5] on each
image after image intensity normalization by selecting 20–40
consecutive points for the adventitia, media, and intima at the
far wall. The measurements were performed between 1–2 cm
proximal to the bifurcation of the CCA, on the far wall [2], over
a distance of 1.5 cm. The bifurcation of the CCA was used as
a guide and all measurements were made with reference to that
region. The IMT, MLT, and the ILT were then calculated as the
average of all vertical measurements taken at the interpolated
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perpendicular distances between these structures. The measur-
ing points and delineations were saved for further comparison.
One of the authors (M. Pantziaris) performed the manual seg-
mentation measurements (see also [5]).

C. IMC, ML, and IL Snake Segmentations

The IMC, ML, and IL regions were semiautomatically seg-
mented from the images. The segmentation system is based
on the Williams and Shah method [30], as documented in [5].
We first estimate an initial contour for the intima (I5) and ad-
ventitia (I7) using an initial contour estimation procedure pro-
posed in [25]. We then segment the IMC using a semiautomated
snakes-segmentation system [25], by deforming the initial es-
timated intima and adventitia boundaries, and extracting the
final I5 (lumen–intima interface) and I7 boundaries (media–
adventitia interface). The upper side of the ML (see Fig. 1, Z6)
was then estimated by deforming the lumen–intima interface
(boundary I5) by 0.36 mm (6 pixels) downward, and then de-
formed by the snakes-segmentation algorithm proposed in [5]
and [25], in order to fit the media boundary. This displace-
ment of 0.36 mm is based on the observation that the manual
mean IMT lies between 0.54 mm (minimum of IMT mean)
and 0.88 mm (maximum of IMTmean) with a mean IMT of
0.71 mm [25]. By taking into consideration that the spatial reso-
lution (distance between two pixels) is 0.06 mm, then the IMT is
lying within the range of 0.54–0.88 mm (9 < IMT < 15 pixels),
with a mean of 0.71 mm (12 pixels). Thus, in order to estimate
the MT, the displacement of the contour should be on average
0.36 mm (6 pixels times 0.06 mm) downward, which is half of
the size of the IMT (the distance between I5 and I7, where I7
is the media–adventitia interface). In order to achieve standard-
ization in extracting the thickness and AM–FM measures from
the IMC, ML, and IL, segments with similar dimensions were
divided based on the following procedure. A region of interest
of 9.6 mm (160 pixels) in length was first extracted. This was
done by estimating the center of the IMC area and then select-
ing 4.8 mm (80 pixels) left and 4.8 mm (80 pixels) right of the
center of the segmented IMC. Selection of the same IMC, ML,
and IL areas in length from each image is important in order
to be able to extract comparable measurements between images
and subject groups.

We note that there was no significant difference between the
manual and automated segmentation measurements for the IMC,
ML, and IL [5].

In the present study, in less than 8% of the cases, the posi-
tioning of the initial snake contour was not correctly calculated.
There were another 6% of the cases, where the ML structure was
very small and the two snake contours were trapped together.
For these cases, the user of the proposed system may run the
snakes initialization procedure again in order to estimate the
correct initial snake contour, and during the snakes deformation
the user may interact and manually correct the contour [5], [25].

D. AM–FM Methods

The basic AM–FM demodulation system is presented in
Fig. 2(a). Here, the input image is first normalized. The nor-

Fig. 2. AM–FM demodulation system: (a) system diagram; (b) effective spec-
tral coverage of dyadic filterbank with low, medium, and high bandpass-channel
filters centered around the horizontal frequencies. The effective spectral cov-
erage is achieved using an extended Hilbert transform operator, followed by a
2-D, separable filterbank [16]. Due to the inherent symmetry of frequency com-
ponents for real-images, expressed as F (u, v) = F ∗ (−u,−v) in the spectral
domain, we note that the upper two-quadrants can be inferred from the lower
ones (see [16] for details on the method). Also, the maximum image intensity
in the input image is normalized to 1.0.

malized image is then processed using a Hilbert operator and
a multiscale filterbank to produce AM–FM features associated
with each channel filter. The dominant features over the low-,
medium-, and high-frequency scales are then selected as the out-
puts of the method. In what follows, we provide a step-by-step
summary of the employed AM–FM method. We refer to [16]
for full details on the method. First, we normalize each input
image to a maximum image intensity of 1. Please recall that the
spatial resolution was also standardized prior to any further pro-
cessing. Then, for the segmented IMC, ML, and IL images, we
first computed an extended version of the 1-D analytic signal,
as given in [16]

�

f AS(x, y) = f(x, y) + jH2−D[f(x, y)] (2)

where f(x, y) denotes the input image, and H2−D denotes the
2-D Hilbert transform operator applied along the columns. The
next step requires the application of a 2-D filterbank that covers
the discrete frequency space (see Fig. 2(b)).

In what follows, we will describe the method for generat-
ing AM–FM component estimates over each 2-D channel fil-
ter. A basic requirement is that each IF estimate falls within
the pass-band of the filter [16]. For the current application, we
note that we have horizontal image structures, which are thin
in the vertical direction. The thin spatial spread in the vertical
direction results in a wide vertical frequency spread. In other
words, we have strong vertical edge artifacts that do not nec-
essarily represent texture. To avoid these artifacts, we do not
generate AM–FM components from the LPF and channel fil-
ters with large vertical components. Thus, we only consider
AM–FM estimates from filters adjacent to the horizontal fre-
quency axis. Based on the magnitude of the estimated IF, we
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label the remaining filters as “L” for low, “M” for medium,
and “H” for high frequency (see Fig. 2(b)). To further reduce
edge artifacts, we consider only AM–FM measurements that are
within the segmented regions of each structure.

We use the outputs of each bandpass filter to estimate the
IA, IP, and IF. This demodulation step is labeled as “dem” in
Fig. 2(a). The IA is given by the absolute value of the complex-
valued output. The IP is given as the angle of the channel filter
output. The estimation of the IF requires a small number of
additional steps.

First, we normalize the output from each filter using [12], [16]

f̄AS,i(x, y) =
�

f AS,i(x, y)/|
�

f AS,i(x, y)| (3)

where
�

f AS,i(x, y) denotes the output of the ith filter. Second,
we consider IF estimates based on

dϕ(x, y)
dx

∼= 1
n

arccos
(

f̄AS,i(x + n, y) + f̄AS,i(x − n, y)
2f̄AS,i(x, y)

)

(4)
and similarly for dϕ/dy. In (4), we consider n = 1, 2, 3, 4 for the
low frequencies, n = 1, 2 for the medium frequencies, and n =
1 for the high frequencies. Among the IF estimates, we select
the one that generates the minimum argument to the arccos(.)
function. This also happens to give the minimum condition
number for the function evaluation. Similarly, we estimate the
IF component along the y-direction. As mentioned earlier, if the
estimated IF falls outside the support of the bandpass filter, then
it is considered as inaccurate.

At each pixel, for each scale (low/medium/high passbands),
we select between two possible AM–FM component estimates.
This is done by selecting the AM–FM features that give the
largest IA estimate. The procedure is known as DCA, which
is illustrated using the MUX block in the system diagram of
Fig. 2(a).

For the IA features, we will use the terms low-IA, medium-IA,
and high-IA to refer to IA estimates derived from the different
channels. For the IF, we will use the terms low-IF, medium-IF,
and high-IF to refer to the derived IF magnitude estimates. We
normalize the IF magnitude estimates to cycles/mm, providing
a physically meaningful interpretation of the texture measure-
ments. Furthermore, please note that the normalization of the
maximum-input image intensity corresponds to the normaliza-
tion of the IA estimates.

E. Statistical Analysis

The Mann–Whitney rank sum test (for independent samples
of different sizes) is used in order to identify if there are SD or
NS between the extracted AM–FM features. For significant dif-
ferences, we require p < 0.05 and compare between age groups
and between male and female subjects. We use median values
over the segmented components to investigate the relationships
between the three different age groups for the IMC, ML, and
IL. Similarly, for comparing independent samples from equal
populations, we use the Wilcoxon rank sum test to detect texture
and AM–FM feature differences between the IL, ML, and IMC,
for both manual and automated segmentations. We also use box

Fig. 3. High-scale AM–FM analysis of the IMC, ML, and IL for a male
asymptomatic subject aged 54. (a) Original IMC (left column), ML (middle
column), IL (right column) images; (b) logarithm view of IMC, ML, and IL;
(c) logarithm view of the medium-scale IA; (d) |IF| of IMC, ML, and IL;
(e) medium-scale FM reconstruction of IMC, ML, and IL. Note that IF estimates
with magnitudes outside the support of the medium-scale passbands are not
shown.

plots to compare between IMC, ML, and IL, and between HIA,
MIA, and LIA amplitude.

III. RESULTS

We present several results to show that AM–FM texture fea-
tures can be used to differentiate between the different age
groups. We also investigate AM–FM texture feature sensitiv-
ity to sex and compare with classical texture features from [9].

We provide an example for AM–FM texture analysis in Figs. 3
and 4. In Fig. 3, the IMC (see Fig. 3(a) left column), ML (see
Fig. 3(a) middle column), and the IL (see Fig. 3(a) right column)
were extracted using automated segmentations, as described
in [5]. For this example, we have IMT = 0.79 mm, MLT =
0.32 mm, and ILT = 0.47 mm. For better visualization, the dig-
ital images of the IMC, ML, and IL have been interpolated to be
300 × 20 pixels. Fig. 3(a) through Fig. 3(e) present high-scale
AM–FM estimates for comparing the IMC (left column), ML
(middle column), and IL (right column) from a male asymp-
tomatic subject aged 54. We show the original images of the
IMC, ML, and IL in the first row of Fig. 3(a). For better visual-
ization of these images, we also present the logarithmic versions
of these figures in Fig. 3(b). These images were generated by
simply taking the log(.) of the images in Fig. 3(a). Similarly,
we present the logarithmic version of the IA in Fig. 3(c). The
IF magnitude IF is shown in Fig. 3(d), and the FM images in
Fig. 3(e). The FM images refer to cos(φ) (see (1)).

Fig. 4 presents a comparison of the cumulative density func-
tions from the images in Fig. 3 in terms of the intensity and IA
(see Fig. 4(a)), IF in both the horizontal and vertical directions
(see Fig. 4(b)) and comparison in terms of the IF magnitude IF
(see Fig. 4(c)).

Table I presents a comparison of the mean, STD, median,
25%, 75% quartiles, and IQR between the high, medium, and
low AM–FM features extracted from the IMC, ML, and IL for
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Fig. 4. High-scale AM–FM analysis example. This figure provides a com-
parison of the cumulative density functions (CDfs) from the images in Fig. 3.
Results for the IMC are presented using solid lines, for ML we use ‘‘–’’ lines
and IL with dotted (‘‘. . .’’) lines. (a) Comparison in terms of image intensity
(I) and IA; (b) comparison in terms of IF in the x and y directions; and (c)
comparison in terms of |IF| magnitude.

the automated segmentation measurements for the three differ-
ent age groups, below 50 (<50), between 50 and 60 (50–60),
and above 60 (>60) years old. The results indicate that for the
HIF magnitude median for the ML, the 75th percentile value
of the >60 age group remains lower than the median value of
the 50–60 age group (5.59 < 5.61 cycles/mm). For the IL, we
similarly observe that the 75th percentile of the low-scale me-
dian IA for the >60 group remains significantly lower than the
median of the 50–60 group (4.10 < 4.28 hundreds, see last two
rows in Table I).

We provide a list of AM–FM and classical texture features that
showed significant differences among age groups and anatomi-
cal structures in Table II (classical texture features results taken
from [9]). AM–FM features can be used to differentiate among
several different age groups from each structure (IMC, ML,
IL). Based on the dyadic frequency decomposition, we have 1)
low-frequency components from 1.04 to 2.95 cycles/mm that
correspond to IWs from 5.66 to 16 pixels (0.34–0.96 mm);
2) medium-frequency components from 2.08 to 5.89 cycles/mm
that correspond to IW from 2.83 to 8 pixels (0.17–0.48 mm); and
3) high-frequency components from 4.17 to 11.79 cycles/mm
that correspond to IW from 1.41 to 4 pixels (0.085–0.24 mm).

For the AM–FM features that could be used to detect signif-
icant textural differences between age groups, we present box
plots in Fig. 5. We present box plots for the IA from the low-
and medium-frequency scales, and IF magnitude from high-
frequency scales. We summarize results from all age groups
and both sexes in the left column. We present separate results
from the two sexes (all age groups) in the right-column plots.

In Table III, we compare AM–FM feature differences asso-
ciated with differences in sex. Here, we note that the IA for the
ML showed significant differences between males and females

Fig. 5. Box plots for the IA and IF magnitude for IMC, ML, and IL for dif-
ferent scales, age groups. (a) High-frequency scale IF magnitude. (b) Medium-
frequency scale results. (c) Low-frequency scale IA results. For each we also
present the age group and anatomical location. IQR values are shown above
the box plots. In each plot we display the median, lower, and upper quartiles
and confidence interval around the median. Straight lines connect the nearest
observations with 1.5 of the Inter-quartile range (IQR) of the lower and upper
quartiles. Unfilled circles indicate possible outliers with values beyond the ends
of the 1.5 × IQR. Here, we note that the input image has been normalized,
where the maximum image intensity value is 1.0.

for all age groups. We refer to the plots of Fig. 5 for the IA
differences between males and females. It is also interesting
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TABLE I
COMPARISON OF THE MEAN, STANDARD DEVIATION (STD), MEDIAN, LOWER

QUARTILE (P25%), UPPER QUARTILE (P75%), AND INTER-QUARTILE RANGE

(IQR) BETWEEN THE HIGH, MEDIUM, AND LOW AM–FM FEATURES

EXTRACTED FROM THE IMC, ML, AND IL FOR THE AUTOMATED

SEGMENTATION MEASUREMENTS FOR THE THREE DIFFERENT AGE GROUPS,
BELOW 50 (<50), BETWEEN 50 AND 60 (50–60), AND ABOVE 60 (>60) YEARS

OLD. HERE, THE IA VALUES HAVE BEEN PREMULTIPLIED BY 100 FOR BETTER

VISUALIZATION. RECALL THAT THE ORIGINAL IMAGES WERE NORMALIZED TO

A MAXIMUM BRIGHTNESS VALUE OF 1. THUS, THE IA VALUES REPRESENT A

PERCENTAGE OF THE MAXIMUM INPUT IMAGE INTENSITY. THE

INSTANTANEOUS FREQUENCY MAGNITUDE, IF, IS MEASURED IN CYCLES/MM

TABLE IA
AUTOMATED IMC, ML, AND IL SEGMENTATIONS IN MILLIMETERS FOR THE

THREE DIFFERENT AGE GROUPS, BELOW 50 (<50), BETWEEN 50 AND 60
(50–60), AND ABOVE 60 (>60) YEARS OLD. HERE, THE IA VALUES HAVE

BEEN PREMULTIPLIED BY 100 FOR BETTER VISUALIZATION

to note that the IF magnitude from high scales did not show
significant differences related to sex. The IF distributions for
high scales appear to be very similar (see Fig. 5(b)).

We now want to examine significant trends through the
ages using box plots and regression analysis. From Fig. 5 and
Tables I–III, for the age groups from 50–60 to >60, we can
see several significant changes. We focus on the ML and IL: 1)

TABLE II
COMPARISON BETWEEN THE HIGH, MEDIUM, AND LOW AM–FM AND

CLASSICAL TEXTURE FEATURES EXTRACTED FROM THE IMC, ML, AND IL
FOR THE AUTOMATED SEGMENTATION MEASUREMENTS FOR THE THREE

DIFFERENT AGE GROUPS, BELOW 50 (<50), BETWEEN 50 AND 60 (50–60),
AND ABOVE 60 (>60) YEARS OLD (FIRST THREE COLUMNS) BASED ON THE

MANN–WHITNEY RANK SUM TEST. ONLY THE FEATURES THAT EXHIBITED

SIGNIFICANT DIFFERENCES AT p < 0.05 ARE SHOWN

TABLE III
COMPARISON BETWEEN SEX GROUPS (MALE/FEMALE) FOR THE IMC, ML,

AND IL AM-FM HIGH, MEDIUM, AND LOW FREQUENCIES FEATURES FOR THE

INSTANTANEOUS AMPLITUDE (IA) AND THE INSTANTANEOUS FREQUENCY (IF)
USING THE MANN WHITNEY RANK SUM TEST

for the ML, the high-scale IF magnitude median (±IQR) un-
dergoes a significant drop from 5.61 (±0.20) cycles/mm for the
50–60 age group to 5.51 (±0.17) cycles/mm for the >60 group
(p = 0.004). We also see a significant increase in the low-scale
IA median (±IQR) value from 3.42 (±1.20) hundreds for the
<50 age group to 3.60 (±1.23) hundreds for the 50–60 group
(p = 0.0033). Furthermore, we did not find that these changes
depended on sex; 2) for the IL, the low-scale IA median (±IQR)
value shows a drop from 4.28 (±1.34) hundreds from 50–60 to
3.81 (±0.80) hundreds for the >60 age group (p = 0.026).

From these findings, it is clear that we have different textural
changes occurring in the ML and the IL.

In summary from Table II, we observe the following.
1) Significant differences in IMC texture between the age

group of over 60 and younger. a) For the <50 and >60
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years old using the texture features GSM, STD, DV, and
entropy, or medium-scale IA. b) For ages 50–60 and >60
years old using the texture features STD and contrast or
using low-scale IA or high-scale |IF| magnitude.

2) Significant differences in ML texture between any two age
groups: a) For ages <50 and 50–60 years old using the
texture features GSM, and SS-TEL, or low-scale IA. b)
For ages <50 and >60 years old using the texture features
GSM, STD, contrast, DV, complexity, coarseness, and SS-
TEL. c) For ages 50–60 and >60 years old using the
texture feature coarseness or using high-scale |IF|.

3) Significant differences in IL texture between the age group
of over 60 and younger: a) For the ages <50 and >60 years
old using the texture feature complexity, or low-scale IA.
b) For the ages 50–60 and >60 years old using low-scale
IA.

Regression analysis demonstrated that there was no linear
relation among the low-, medium-, and high-scale IA and IF
components with age.

IV. DISCUSSION

In this study, we investigated AM–FM features extracted from
the IMC, ML, and IL of 100 ultrasound images of the CCA
of asymptomatic subjects. In summary, we found significant
texture differences between the higher risk age group of >60
years versus the lower risk age group of <50 and the 50–60
group. In particular, between the <50 and >60 groups, we found
significant differences in the medium-scale IA extracted from
the IMC. Between the >60 and the 50–60 groups, we found
significant texture changes in the low-scale IA and high-scale
IF magnitude extracted from the IMC, and the low-scale IA
extracted from the IL. Also, we note that the IA for the ML
showed significant differences between males and females for
all age groups. The AM–FM features provide complimentary
information to classical texture analysis features like the gray-
scale median (GSM), contrast and coarseness.

From Table I, for the HIF magnitude median for the ML,
we observe that the 75th percentile value of the >60 age group
remains lower than the median value of the 50–60 age group
(5.59 < 5.61 cycles/mm). The median value drop represents a
reduction of about half a STD of the distribution of the median
frequency of the 50–60 group. Furthermore, as demonstrated
in the FM plots of Figs. 3 and 4, this reduction corresponds
to the horizontal frequency components that span across the
long side of the ML. Given the high-IF magnitude range of
4.17–11.79 cycles/mm, we can see that the median IF magni-
tude is concentrated on the lower half of the high-frequency
spectrum (5.6 cycles/mm is closer to 4.17 than to 11.79 cy-
cles/mm). A possible explanation of the significant drop may
be due to the spatial growth of the high-frequency components.
In other words, spatial growth of these high-frequency compo-
nents may have led to a shrinkage in the frequency domain, as
suggested by the uncertainty principle. Furthermore, we note
that this spatial growth was not seen in the lower and middle
frequency ranges.

For the IL, we similarly observe that the 75th percentile of
the low-scale median IA for the >60 group remains signifi-

cantly lower than the median of the 50–60 group (4.10 < 4.28
hundreds). Furthermore, the drop of the IA is about half an
STD of the variation. Compared to the fine changes of the high-
frequency components, recall that these lower frequency com-
ponents range from 1.04 to 2.95 cycles/mm. The drop in the
low-scale IA over these components suggests that any growth
or change will have to be attributed to finer, higher frequency
scales.

The AM–FM features that gave significant differences, as
documented in Table II, are as follows: 1) the IMC age group
of the >60 can be differentiated from the <50 group using the
medium-scale IA, and from the 50–60 group using the low-
scale IA, and/or high-scale IF; 2) the ML age group of 50–60
can be differentiated from the <50 group using the low-scale
IA, and from >60 group using the high-scale IF; and 3) the IL
age group of >60 can be differentiated from the 50–60 group
using the low-scale IA.

We have found in [9], a decrease of the GSM of the ML
(MLGSM) with increasing age (59.7 ± 12.9, 49.9 ± 22.0, 33.6
± 25.8 for the age groups <50, 50—60, and >60, respectively),
as well as decrease with thickness (MLT). The decrease in the
MLGSM suggests an increase in the hypoechoic (echolucent)
structures. This may be due to an increased concentration of
lipids (which appear hypoechoic) and hyperplasia of muscle
fibers in the ML in early atherosclerosis [31]. The MLGSM
of male patients (47.9 ± 20.7) was shown to be brighter than
that of the female (40.5 ± 17.5) patients. The GSM of the IMC
(IMCGSM) for the age groups <50, 50–60, and >60 was 39.2
± 13.6, 25.8 ± 18.1, and 27.6 ± 14.4), while the ILGSM (the
GSM of the intima layer) was 38.6 ± 17.2, 39.4 ± 15.8, and
32.8 ± 15.7, respectively. The GSM values for the IMC, ML,
and IL for all patients were 30 ± 21.3, 28 ± 18, and 35±18.5,
respectively. Furthermore, some other classical texture features
used in [9] gave significant differences between age groups.
More specifically, for ages <50 and >60, the texture features
STD (p = 0.03, p = 0.04, p = 0.01 for IMC, ML, and IL,
respectively), contrast (p = 0.001 for IL), complexity (p =
0.0001 for IL), and coarseness (p = 0.004 for the ML) showed
significant differences. The SS-texture energy from SS-kernel
(Laws texture energy measures) gave significant different values
for the ML for <50 and 50–60 (p = 0.04) and the entropy for
the IMC for <50 and >60 (p = 0.04).

In [8], the authors reported on the properties of the GSM of
the IMC from a random sample of 1016 subjects aged exactly
70. More specifically, for the CCA, they showed that the GSM
of the IMC was correlated to GSM in the plaque independently
of plaque size and IMT. This finding suggests that the GSM
and maybe other texture features extracted from the ML can
be important and easily measurable characteristics of the CCA
wall that may have prognostic impact for assessing CVD risk.

Previously, GSM analysis has been performed mainly on
plaques. The GSM was found to be related to histological fea-
tures of the plaque, such as the elastin and calcium content, as
well as to the size of the lipid-rich necrotic core [32]. From [4],
the GSM of the IMC may be the first marker of atheroscle-
rosis and may precede the development of significant increase
in IMT. This would enable earlier identification of high-risk
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individuals based on the analysis of the CCA artery-wall tex-
tural characteristics. In [33], the authors observed an increase
in the granularity in association with atherosclerotic disease,
where a granular IMC indicated more advanced atherosclerosis.

In what follows, we will attempt to relate the significant differ-
ences in AM–FM features to structural differences. In essence,
the multiscale AM–FM analysis allows us to associate structural
changes to different structures (IMC, ML, and IL). As noted ear-
lier, we have a drop in the low-scale IA of the IL with increasing
age (see Fig. [5](e)). Since the image brightness is normalized
to a maximum of 1, the reduction in the median low-scale IA
may be attributed to the appearance of new, brighter-appearing
(echogenic) structures. Here, we are making the association be-
tween brighter regions and high values of the IA (see (1)). Clini-
cally, this may be due to the deposition/accumulation of calcium
(echogenic) within the arterial walls, a process not completely
understood, that can occur early in the process of atherosclero-
sis [34]. The association between echogenic pixels and calcium
is based on histology [32]. However, echogenic pixels may also
be due to elastin [32]. Thus, our association of bright compo-
nents with calcium changes has to be further investigated.

This implies structural instability of the IL with increasing
age. Here, it is interesting to note that the GSM describes varia-
tions over all scales, while our multiscale IA analysis enables us
to associate these changes with different structural component
sizes.

The reduction in the ML high-scale IF magnitude may be
associated with thickening of the fine structures (see Fig. 5(a)).
Here, we are making the association between high frequencies
and fine structures. An enlargement of finer structures will lower
the IF magnitude. However, further studies are needed to estab-
lish the associations between finer structures and actual plaque
components (such as calcium, lipid cores, etc). Overall, as seen
in Fig. 5, we have nonlinear trends in most AM–FM features.
Our focus has been to provide an interpretation for significant
differences of the ML and IL between the 50–60 with the >60
groups.

The intensity normalization method used in this study was
found to be helpful in the manual contour extraction [27], as well
as the snakes segmentation of the IMC [25] and the atheroscle-
rotic carotid plaque segmentation [35]. Moreover, this method
increased the classification accuracy of different plaque types
as assessed by the experts [36]. Ultrasound image normaliza-
tion was carried out prior to the segmentation of the IMT on
carotid artery ultrasound images for increasing the image con-
trast in [37].

Our clinical interests are in the development of an early di-
agnosis and prevention system that can provide a measure of
the risk levels prior to any symptoms. Clearly, it is difficult to
assess stroke risk levels prior to any symptoms. Having said
this, it is well established that the risk of stroke increases with
age [31]. Thus, we are very interested in understanding how
atherosclerotic texture changes as a function of age. To this end,
we carefully selected normal subjects that have not developed
any clinical symptoms of stroke or transient ischemic attack.
Clinically, as a measure of risk increase, we have verified that

this population exhibits a strong correlation and a linear increase
in the size of the IMT as a function of age [5], [9].

Some limitations of the proposed method that were also doc-
umented in [5] are briefly presented. One of the limitations is the
presence of strong speckle noise, which hinders the visual and
automatic analysis in ultrasound images [27]. Such images were
not included in this study. Backscattered ultrasound is also angle
dependent. During image acquisition, a standard clinical proto-
col was followed, where the position of the probe was adjusted
so that the ultrasound beam was at right angles to the arterial
wall (see Section II and II-A). This improved the IMC visualiza-
tion. Although, the ultrasound images used in this study showed
a horizontal representation of the CCA, the snake-segmentation
algorithm [25] used to segment the images was also tested in
images with plaques and curved segments [35], and is now be-
ing tested in a larger multiinstitutional database of 400 images.
Currently, this study is giving very satisfactory results, with
only 4%–6% of the images being discarded. The new spatial
compound imaging technique might optimize further carotid
plaque imaging [26], [31]. Furthermore, only vessels without
atherosclerotic plaques were segmented in this study because
the proposed snakes-border-detection method does not apply to
cases, where the IMT is larger than 1.4 mm. For larger IMT, a
different initialization procedure based on plaque segmentation
should be followed (see [35]).

Our AM–FM texture analysis is limited by the thin layers we
are analyzing. The application of digital bandpass filters will
result in boundary artifacts. We have managed to reduce these
effects by reporting on the segmented regions and focusing
on bandpass channel filters with substantial horizontal compo-
nents. However, even the horizontal frequency components are
affected by the left and right boundaries. As part of our long-term
research plan, we are currently investigating algebraic methods
that do not depend on convolution filtering.

Risk factors such as smoking, blood pressure, inflammation
markers, life style, and cholesterol correlate to the traditional
carotid IMT [1], [11], [23], [26], [31], [32], and are also impor-
tant. It would be valuable to relate these risk factors to AM–FM
characteristics extracted from the IL, ML, and IMC. Ongoing
studies from our group will give more findings on this topic.

V. CONCLUDING REMARKS

The AM–FM analysis presented in this study showed that
AM–FM features extracted from the IL, ML, and IMC may be
used to distinguish between age groups and male and female
patients. AM–FM analysis reveals that the IA for all scales and
all structures (IMC, ML, and IL) decreases from the 50–60 to
the >60 age group (see Fig. 5). This decrease in IA, similar to
the reported decrease of the GSM of the ML of the CCA [9],
may be attributed to the deposition/accumulation of calcium
(echogenic) within the arterial walls that can occur early in the
process of atherosclerosis [34]. This is a potential biomarker
associated with increased risk of stroke with increasing age.
Clinically, vascular wall calcification is a marker of atheroscle-
rosis, which increases with age and thus increases the risk for
cardiovascular events [38], [39].
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The proposed methodology may also be applied to subjects
who have already developed atherosclerotic plaques in order
to study the contribution of the ML texture features to cardio-
vascular risk. For these subjects, we want to prognose future
cardiovascular events.

REFERENCES

[1] American Heart Association, Heart Disease And Stroke Statistics, update,
Dallas, Texas, 2007.

[2] P. Pignoli, E. Tremoli, A. Poli, P. Oreste, and R. Paoletti, “Intima plus
media thickness of the arterial wall: A direct measurement with ultrasound
imaging,” Atherosclerosis, vol. 74, no. 6, pp. 1399–1406, 1986.

[3] E. J. Gussenhoven, P. A. Frietman, S. H., R. J. van Suylen, F. C. van
Egmond, C. T. Lancee, H. van Urk, J.R. Roelandt, T. Stijnen, and N. Bom,
“Assessment of medial thinning in atherosclerosis by intravascular ultra-
sound,” Am. J. Cardiol., vol. 68, no. 17, pp. 1625–1632, 1991.

[4] S.M. Ellis and P. S. Sidhu, “Granularity of the carotid artery intima-medial
layer: Reproducibility of quantification by a computer based program,”
British J. Radiol., vol. 73, no. 870, pp. 595–600, 2000.

[5] C.P. Loizou, C. S. Pattichis, A. N. Nicolaides, and M. Pantziaris, “Manual
and automated media and intima thickness measurements of the common
carotid artery,” IEEE. Trans. Ultr. Fer. Freq. Contr., vol. 56, no. 5, pp. 983–
994, May 2009.

[6] M. L. Grønhold, B. G. Nordestgaard, T. V. Schroeder, S. Vorstrup,
and H. Sillensen, “Ultrasonic echolucent carotid plaques predict future
strokes,” Circulation, vol. 104, no. 1, pp. 68–73, 2001.

[7] Q. Liang, I. Wendelhag, J. Wilkstrand, and T. Gustavsson, “A multiscale
dynamic programming procedure for boundary detection in ultrasonic
artery images,” IEEE Trans. Med. Imag., vol. 19, no. 2, pp. 127–142,
2000.

[8] L. Lind, J. Andersson, M. Roenn, and T. Gustavsson, “The echogenecity
of the intima-media complex in the common carotid artery is closely
related to the echogenecity in plaques,” Atherosclerosis, vol. 195, no. 2,
pp. 411–414, 2007.

[9] C.P. Loizou, M. Pantziaris, M. S. Pattichis, E. Kyriakou, and C. S. Pattichis,
“Ultrasound image texture analysis of the intima and media layers of the
common carotid artery and its correlation with age and gender,” Comp,
Med. Imag. Graph., vol. 33, no. 4, pp. 317–324, 2009.

[10] L. E. Chambless, A. R. Folsom, L. X. Clegg, A. R. Sharrett, E. Shahar,
F. J. Nieto, W. D. Rosamond, and G. Evans, “Carotid wall thickness is
predictive of incident clinical stroke: The atherosclerosis risk in commu-
nities (ARIC) study,” Am. J. Epidemiol., vol. 151, no. 5, pp. 478–487,
2000.

[11] C. D. Mario, G. Gorge, R. Peters, F. Pinto, D. Hausmann, C. von Birgelen,
A. Colombo, H. Murda, J. Roelandt, and R. Erbel, “Clinical application
and image interpretation in coronary ultrasound: Study group of intra-
coronary imaging of the working group of coronary circulation and of the
subgroup of intravascular ultrasound of the working group of echocardio-
graphy of the European Society of Cardiology,” Eur. Heart J., vol. 19,
no. 2, pp. 201–229, 1998.

[12] V. Murray, P. Rodriguez, and M. S. Pattichis, “Robust multiscale AM-FM
demodulation of digital images,” IEEE Int. Conf. Image Proc., vol. 1,
pp. 465–468, Oct. 2007.

[13] C. I. Christodoulou, C. S. Pattichis, V. Murray, M. S. Pattichis, and
A. N. Nicolaides, “AM-FM representations for the characterization of
carotid plaque ultrasound images,” in Proc. 4th Eur. Conf. Int. Feder.
Med. Biolog. Eng. (MBEC) 0́8, Antwerp, Belgium, Nov. 23–28, 2008,
pp. 1–4.

[14] J. P. Havlicek “AM-FM image models,” Ph.D. dissertation, Dept.
Electr. Comput. Eng., The University of New Mexico, Albuquerque,
New Mexico, (1996). [Online]. Available: http://hotnsour.ou.edu/joebob/
PdfPubs/JPHavlicekDiss.pdf

[15] V. M. Murray Herrera “AM-FM methods for image and video process-
ing,” Ph.D. dissertation, Dept. Electr. Comput. Eng., Univ. New Mexico,
Albuquerque, New Mexico, Sep. 2008.

[16] V. Murray, P. Rodriquez, and M. S. Pattichis, “Multi-scale AM-FM de-
modulation and reconstruction methods with improved accuracy,” IEEE
Trans. Imag. Proces., vol. 19, no. 5, pp. 1138–1152, May. 2010.

[17] M. S. Pattichis, “Multidimensional AM-FM models and methods for
biomedical image computing,” in Proc. 34th IEEE Ann. Int. Conf. Eng.
Med. Biol. Soc., Sep. 2–6, 2009, pp. 5641–5644.

[18] V. Murray, M. S. Pattichis, and P. Soliz, “New AM-FM analysis methods
for retinal image characterization,” in Proc. 42nd IEEE Asilomar Conf.
Signals, Syst. Comput., 2008, pp. 664–668.

[19] V. Murray, S. Murrilo, M. S. Pattichis, C.P. Loizou, C. S. Pattichis, E. Kyr-
iakou, and A. Nicolaides, “An AM-FM model for motion estimation in
atherosclerotic plaque videos,” in Proc. 41st IEEE Asilomar Conf. Signals,
Syst. Comput., Nov. 4–7, 2007, pp. 746–750.

[20] M. S. Pattichis and A. C. Bovik, “Analyzing image structure by multi-
dimensional frequency modulation,” IEEE Trans. Pattern. Anal. Mach.
Intell., vol. 29, no. 5, pp. 753–766, May 2007.

[21] C. I. Christodoulou, C. S. Pattichis, M. Pantziaris, and A. Nicolaides,
“Texture-based classification of atherosclerotic carotid plaques,” IEEE
Trans. Med. Imag., vol. 22, no. 7, pp. 902–912, Jul. 2003.

[22] C. Agurto, V. Murray, E. Barriga, S. Murillo, M. S. Pattichis, H. Davis,
S. R. Russell, M. D. Abramoff, and P. Soliz, “Multiscale AM-FM meth-
ods for diabetic retinopathy lesion detection,” IEEE Trans. Med. Imag.,
vol. 29, no. 2, pp. 502–512, Feb. 2010.

[23] F. Bartolomucci, M. Paterni, C. Morizzo, M. Kozakova, N. D’Allitto,
F. Strippoli, C. Palombo, and G. Maiorano, “Early structural changes
of carotid artery in familial hypercholesterolemia,” Am. J. Hypertens.,
vol. 14, pp. 125 A–126 A, 2001.

[24] A Philips Medical System Company, “Comparison of image clarity,
SonoCT real-time compound imaging versus conventional 2D ultrasound
imaging,” ATL Ultrasound, Report, ATL Philips Company, Bothell, WA,
Sep. 2001.

[25] C. P. Loizou, C. S. Pattichis, M. Pantziaris, T. Tyllis, and A. Nicolaides,
“Snakes based segmentation of the common carotid artery intima media,”
Med. Bio. Eng. Comput., vol. 45, no. 1, pp. 35–49, 2007.

[26] T. Elatrozy, A. N. Nicolaides, T. Tegos, A. Zarka, M. Griffin, and
M. Sabetai, “The effect of B-mode ultrasonic image standardiza-
tion of the echodensity of symptomatic and asymptomatic carotid
bifurcation plaque,” Int. Angiol., vol. 17, no. 3, pp. 179–186,
1998.

[27] C. P. Loizou, C. S. Pattichis, M. S. Pantziaris, T. Tyllis, and A. N.
Nicolaides, “Quantitative quality evaluation of ultrasound imaging in the
carotid artery,” Med. Biol. Eng. Comput., vol. 44, no. 5, pp. 414–426,
2006.

[28] W. Osika, F. Dangardt, J. Groenros, U. Lundstman, A. Myredall, M. Jo-
hansson, R. Volkmann, T. Gustavsson, L. M. Gan, and P. Friberg, “In-
creasing peripheral artery intima thickness from childhood to senior-
ity,” Arterioscler. Thromb. Vasc. Biol., vol. 27, no. 3, pp. 671–676,
2007.

[29] A. Schmidt-Truckass, D. Grathwohl, A. Schmid, R. Boragk, C. Upmeier,
J. Keul, and M. Huonker, “Structural, functional, and hemodynamic
changes of the common carotid artery with age in male subjects,” Ar-
terioscler. Thromb. Vasc. Biol., vol. 19, no. 4, pp. 1091–1097, 1999.

[30] D. J. Williams and M. Shah, “A fast algorithm for active contour and
curvature estimation,” GVCIP: Image Underst., vol. 55, no. 1, pp. 4–26,
1992.

[31] J. K. Balasundaram and R. S. D. Wahida Banu, “A non-invasive study of
alterations of the carotid artery with age using ultrasound images,” Med.
Biol. Eng. Comput., vol. 44, no. 9, pp. 767–772, 2006.

[32] I. Goncalves, M. W. Lindholm, L. M. Pedro, N. Dias, J. Fernandes,
G. N. Fredrikson, J. Nilsson, J. Moses, and M. P. S. Ares, “Elastin and
calcium rather than collagen or lipid content are associated with echo-
genecity of human carotid plaques,” Stroke, vol. 35, no. 2, pp. 795–800,
2004.

[33] G. Belcaro, A. Barsotti, and A. N. Nicolaides, “Ultrasonic Biopsy: A
non-invasive screening technique to evaluate the cardiovascular system
and to follow up the progression of atherosclerosis,” Vascular, vol. 20,
pp. 40–50, 1991.

[34] U. Hoffmann, D. Kwait, J. Handwerker, R. Chan, G. Lamuraglia, and
T. J. Brady, “Vascular calcification in ex vivo carotid specimens: Precision
and accuracy of measurements with multi-detector row CT,” Radiology,
vol. 229, no. 2, pp. 375–381, 2003.

[35] C. P. Loizou, C. S. Pattichis, M. S. Pantziaris, and A. N. Nicolaides, “An
integrated system for the segmentation of atherosclerotic carotid plaque,”
IEEE Trans. Inform. Techn. Biomed., vol. 11, no. 5, pp. 661–667, Nov.
2007.

[36] A. N. Nicolaides, S. K. Kakkos, M. Griffin, M. Sabetai, S. Dhanjil,
D. Thomas, G. Geroulakos, N. Georgiou, S. Francis, E. Ioannidou, and
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