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Abstract—The optic disk (OD) center and margin are typically
requisite landmarks in establishing a frame of reference for classi-
fying retinal and optic nerve pathology. Reliable and efficient OD
localization and segmentation are important tasks in automatic eye
disease screening. This paper presents a new, fast, and fully auto-
matic OD localization and segmentation algorithm developed for
retinal disease screening. First, OD location candidates are identi-
fied using template matching. The template is designed to adapt to
different image resolutions. Then, vessel characteristics (patterns)
on the OD are used to determine OD location. Initialized by the
detected OD center and estimated OD radius, a fast, hybrid level-
set model, which combines region and local gradient information,
is applied to the segmentation of the disk boundary. Morpholog-
ical filtering is used to remove blood vessels and bright regions
other than the OD that affect segmentation in the peripapillary
region. Optimization of the model parameters and their effect on
the model performance are considered. Evaluation was based on
1200 images from the publicly available MESSIDOR database.
The OD location methodology succeeded in 1189 out of 1200 im-
ages (99% success). The average mean absolute distance between
the segmented boundary and the reference standard is 10% of the
estimated OD radius for all image sizes. Its efficiency, robustness,
and accuracy make the OD localization and segmentation scheme
described herein suitable for automatic retinal disease screening in
a variety of clinical settings.

Index Terms—Automatic eye disease screening, level set segmen-
tation, optic disk (OD) localization, parameter optimization.

I. INTRODUCTION

AUTOMATED analysis algorithms provide an objective,
accurate, and efficient solution to the high demand of

screening for eye diseases such as diabetic retinopathy (DR). DR
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Fig. 1. Retinal image landmarks.

is a retinal disease caused by complications of diabetes mellitus,
which can eventually lead to blindness. By detecting eye disease
early through automated screening algorithms, treatment would
become more effective and significant savings in health care
costs could be realized.

One of the first requirements for automatic eye screening
system is the localization of anatomical landmarks such as the
optic disk (OD), fovea, and retinal vasculature (see Fig. 1). The
OD is the region of the posterior pole where the vasculature and
retinal nerve axons enter and leave the eye. The OD in a healthy
retinal image usually appears as a bright yellowish and elliptical
object marked by surface vessels; its bright appearance is in
contrast to the darker surrounding retinal tissue. The absence
of the pigmented epithelium in this zone is responsible for the
yellowish color of the OD in the digital fundus image.

The appearance of the OD, as well as the retina, may vary
significantly. The natural concave shape of the retina, in addition
to the large individual variation in the melanin concentration of
the retinal pigment epithelium layer of the retina, is responsi-
ble for different levels of reflected illumination from the fun-
dus. The presence of pathologic changes occurring at the site
of the OD, such as neovascularization from DR or changes to
the physiologic cup due to glaucoma, can also affect its appear-
ance dramatically. Other anomalies, including myopic crescents,
peripapillary atrophy (PPA), and myelinated nerve fibers distort
the size, shape, and brightness of the OD. Image quality can
also affect the appearance of the OD. A retinal image may be
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unevenly illuminated or poorly focused, resulting in a less dis-
tinct and blurred OD. Also, the temporal side of the OD is usu-
ally brighter than the nasal side, especially in macula-centered
photographs. Images exhibiting large variations in the appear-
ance of the OD are shown in the first column of Fig. 4. In the
development of an automatic OD localization and segmentation
methodology, it is important to consider all major OD variations.

OD detection is the first and necessary step for automated
DR screening. Since the OD shares pixel intensity and color
characteristics with bright lesions such as hard exudates, DR
screening algorithms must avoid including OD information that
mask lesion features [1]–[3]. Additionally, the OD is impor-
tant in localization of the fovea/macula, the center of the retina,
where signs of sight-threatening disease may appear. We also
note that OD margin segmentation is essential to the detection
of abnormalities associated with the OD, e.g., neovasculariza-
tion on the disk (NVD), papilledema, and glaucoma [4], [5].
Glaucoma can be characterized by gradual cupping of the optic
nerve head. The size of the OD and the shape of the bound-
ary are quantitative metrics used for glaucoma diagnosis and
progression monitoring. The disk margin is used to measure
cup-to-disk vertical ratio, cup-to-disk area ratio, etc. We do not
consider these OD pathologies further in this paper.

A. OD Detection

Reliable OD detection is surprisingly difficult, due to the
variability in its appearance and confounding bright patholo-
gies. Many approaches have been developed in order to detect
the OD. Here some of the most common methods are sum-
marized; a more detailed review of them can be found in [6]
and [7]. In previous investigations, intensity and shape have
been the main features used to locate the position of the OD.
Methods based on intensity variance [8], principal component
analysis and model-based method [9], [10], template match-
ing [11], pyramidal decomposition with the Hausdorff-based
template matching [12], 1-D projection of image features to ob-
tain fast localization [13], and linear operators [14] have been
reported in the literature. Other approaches exploit the location
and orientation of vasculature in the retinal image [7], [15]–[18].
Fuzzy convergence of blood vessels to locate the center of OD
was used in [19]. An approach to localize the OD by fitting a
parametric geometrical model to the main vessels is proposed
in [20]. The use of the vasculature network can improve OD lo-
calization reliability, especially when the OD is not visible due
to advanced retinal pathologies within the image. However, the
accurate segmentation of the vascular tree in the entire image
to detect the OD is a complex and time-consuming task, taking
up to several minutes [7], [15], [16], [20]. The performance of
vasculature segmentation can be affected by bright lesions, red
lesions, and the OD contour. Any misclassification may degrade
the performance of subsequent OD detection.

The motivation behind the proposed methodology is to de-
velop a fast, efficient, and robust algorithm for OD localization
as a prerequisite step in eye disease screening. The proposed
approach uses template matching with adaptive template size
design in CIELab lightness image to select OD candidates. Fur-

ther identification of the OD location is implemented by using
properties of vessels on the OD surface. Instead of segmenting
the whole vascular network in the entire image, a simple and ef-
ficient directional matched filter in the green channel is applied
to OD candidates to obtain the vessel location and orientation
within the OD region. In this way, we achieve robust OD lo-
calization with a short processing time solving the problems
encountered by previous techniques described in the literature.

B. OD Segmentation

Active contours have been one of the most promising ap-
proaches for OD segmentation. Mendels et al. [21] explored
use of a morphological operator followed by the gradient vector
flow (GVF) active contour to segment the disk with an inter-
actively initialized curve, which is set close to the true contour
of the OD. Their technique was tested on a set of nine retinal
images, but no quantitative evaluation was presented. Osareh et
al. [11] proposed intensity template matching to initialize the
deformable contour. They then used color morphological pro-
cessing to obtain a more homogeneous inner disk area, which
increased the accuracy of the GVF active contour segmentation.
An overall accuracy of 90.32% was reported in comparison to
the reference standard of a clinical ophthalmologist on 75 im-
ages. Lowell et al. [22] used a global elliptical parametric model
combined with a local variable edge-strength-dependent stiff-
ness model to fit the contour of the OD. The algorithm was
evaluated on 90 images, achieving “excellent-fair” performance
in 83% of the cases. The performance of this method is sensi-
tive to the curve initialization. Li and Chutatape [23] proposed a
modified active shape model to segment the OD. The algorithm
successfully detected the OD boundary in 33 of 35 images.
For their model, we note that significant effort is needed to set
up the point correspondences using an appropriate training set.
Another deformable model, proposed by Xu et al. [24] was en-
forced by additional constraints of knowledge-based clustering
and smoothing update to reduce false deformation in disk seg-
mentation. Their method achieved a 94% success rate on 100
images. The segmentation failed when the images had patho-
logical regions larger and brighter than the OD. Joshi et al [5]
attempted to segment the OD in the presence of atrophy. They
improved region-based active contour model [25] by using lo-
cal red channel intensity and two texture feature spaces in the
neighborhood of the interested pixels. Quantitative evaluation
was made on 138 retinal images with 30◦ field of view (FOV).
Their model is based on the assumption that textural features
obtained from an OD surrounded by atrophy are different from
the ones obtained from a healthy OD. However, these feature
differences might be too subtle due to the heterogeneity inside
OD, especially after morphology vessel removal. This method
is computationally expensive, as two local textural features are
used.

Recently, Aquino et al. [26] presented a fast OD boundary
segmentation technique and tested it on 1200 images in the
MESSIDOR database. They applied the circular Hough trans-
form, which was also used by Chrastek et al. [27]. The segmen-
tation was performed in parallel, using both the red and green
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Fig. 2. OD localization and segmentation methodology block diagram.

channel of down-sampled images. The color channel with the
higher score in the circular Hough transform on the Prewitt edge
map was selected for OD boundary segmentation. An overlap-
ping area of 86% with the reference standard was achieved.
However, noise and spurious edge points due to heterogeneity
in OD region can potentially give incorrect peak locations at
parameter space in the Hough transform.

Our OD segmentation algorithm was developed using a fast,
hybrid level set model, which will be shown to provide more
accurate delineation of the disk boundary than the Hough trans-
form, and was validated on 1200 images from the MESSIDOR
database. The algorithm is insensitive to curve initialization.
The vessels and bright region distractors in the peripapillary
region are removed using alternating sequential filtering (ASF)
and morphological reconstruction. The fast, hybrid level set
model deforms the evolving curve based on the region and local
edge information, which performs well on the blurred disk mar-
gin. The threshold value is adaptively computed using image-
dependent statistics. Optimization of model parameters ensures
the best segmentation performance.

The paper is organized as follows. In Section II, we present
the methodology for OD localization and boundary segmenta-
tion. The results of the tests on the images of the MESSIDOR
database are presented in Section III. Comparison with results
from applying the Hough transform-based method [25] to the
same database can be found in Section IV. Finally, Section V is
devoted to the conclusions of this study.

II. METHODOLOGY

The OD localization and segmentation methodology pre-
sented herein can be schematically described by the block dia-
gram in Fig. 2. The method consists of three main processing

phases: 1) OD size estimation adaptive to different image res-
olution, 2) OD localization, for determining the location of the
disk center; and 3) OD boundary segmentation. These phases are
further subdivided into several steps and described as follows.

A. OD Size Estimation

An important parameter that needs to be determined in our OD
detection and segmentation algorithm is the size of the OD. Most
of the research works in the literature estimate this parameter
by averaging OD diameters using a subset of images [11], [22].
This approach is tedious and impractical for large datasets.

Using the FOV of the camera and image resolution, we formu-
lated a new approach to calculate the OD size. The MESSIDOR
database images were acquired with a 45◦ FOV, which results
in a retinal area of 124.8 mm2 [28].

If the number of pixels in the FOV is NFOV , the image foot-
print is computed as

fimg =
AFOV

NFOV
(1)

where AFOV is the imaging area of the specific FOV, in this
case, AFOV = 124.8 mm2 .

We calculate the OD radius in pixels rOD img based on the
diameter of the average human optic nerve head, which has been
reported to be approximately 1.85 mm [29]

rOD img =

√
(AOD/fimg)

π
=

√
(DOD/2)2

fimg
(2)

where AOD = π(DOD/2)2 , DOD = 1.85mm.
The 1200 images from MESSIDOR database have three dif-

ferent formats: 1440 ∗ 960, 2240 ∗ 1488 and 2304 ∗ 1536 pixels.
Correspondingly, we have three different estimates of the OD
radius: 70, 100, and 110 pixels.

B. OD Localization Algorithm

We first find the OD candidates using template matching in
the CIElab lightness image. The CIElab color space is an imag-
ing device independent color model. Its lightness component
closely matches human perception of brightness variation. In the
CIElab lightness channel, the image lightness is more uniform
and homogeneous in OD region than in the RGB red channel
while the contrast of OD margin is high. The red channel of a
color retinal image more tends to be saturated.

1) Background Normalization: To reduce the false detection
of OD candidates due to nonuniform illumination, we applied
an image illumination correction to the CIElab lightness image
using image division. The oversmoothed background image was
generated by average filtering using a square window three times
the size of the estimated OD radius. The size of the filter cho-
sen is larger than the OD in order to capture the slow-varying
background. We expanded the original image border by half of
the filter window size. Each pixel’s intensity for the out-of-FOV
dark region is replaced by averaging gray levels of pixels in the
FOV. The purpose of the expansion is to remove the artifacts at
the image border in the processed image due to the large size of
the filter and the black background.
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Fig. 3. Binary templates, (a) template used in the OD localization method.
(b), (c), and (d) Template variations described in Section IV.

An image f(x, y) can be viewed as a product of an illumi-
nation component i(x, y) and a reflectance component r(x, y),
which depends on the imaging surface

f(x, y) = i(x, y)r(x, y). (3)

A slow-varying background image can be denoted as

fb(x, y) = ib(x, y)rb(x, y). (4)

The new image can be expressed as

f(x, y)/fb(x, y) = (i(x, y)r(x, y))/(ib(x, y)rb(x, y)). (5)

We assume the reflectance of the slow-varying background
image is uniform over its surface, rb(x, y) = k, and the illumi-
nation of the both images is the same. Then

f(x, y)/fb(x, y) = r(x, y)/k. (6)

The resulting image is an illumination normalized image.
2) Template Matching: To locate the OD candidates a binary

template where the disk, given in white, is assigned a value 1
and the black background is assigned a value 0. The radius
of the white circle in the template is the estimated OD radius
rOD img . The template width/height is set to be 3 × rOD img
[see Fig. 3(a)]

Since the purpose of template matching is only to provide
the OD candidate locations, we accelerate the algorithm by
searching on a grid (not by pixels), where each grid point is
one-fourth the distance of the OD radius. The performance of
this binary template is comparable to the intensity template
[11], which needs to be obtained on multiple retinal images.
We designed and experimented with several variations of this
binary template (see Fig. 3) and found that there is no significant
advantage using a specific one (see Section IV).

The Pearson correlation coefficient is used to measure the
degree to which the CIElab lightness subimage and the template
agree in general

cij =

∑
x,y

(f (x, y) − fm )(t(x − i, y − j) − tm )√
(
∑

x,y
(f (x, y) − fm )2 )(

∑
x,y

(t(x − i, y − j) − tm )2 )

(7)
where tm and fm are the mean intensity values of the template
and the subimage covered by the template, respectively. The
value of cij is between −1 to +1.

The template matching responses were sorted in ranked order.
The locations with the values in the top 0.5% of the template
matching responses were selected as OD candidates.

3) Directional Matched Filtering: Some regions, such as
those composed of exudates (see Fig. 4, first row), PPA (see
Fig. 4, second row), and myelinated nerve fibers (see Fig. 4, third
row), may also give high correlations in the template matching
algorithm. We are able to remove false positives and locate the
OD center by using one of the most prominent characteristics of
the OD, the main vessel arcades originating from the OD center.

The intensity profile of a blood vessel cross section can be
modeled by using a Gaussian kernel. A 2-D matched filter kernel
is used to convolve with the green channel image in order to
detect the main vessels on the OD [30]. The matched filter
kernel, which matches the intensity profile of a number of vessel
cross sections along the vessel length, is expressed as

G(x, y) = −a e−x2 /2σ 2
, for |y| ≤ L

2
(8)

where L is the length of the segment for which the vessel is
assumed to have a fixed orientation. In (8), the direction of the
vessel is assumed to be aligned along the y-axis to approximate
the direction of the main vessels that cross the OD region. The
kernel size depends on the maximum central vessel width inside
the OD, which is approximately 15% of the OD diameter [31].
To increase the OD detection success rate, a rectangular region is
used with each OD candidate for vertical matched filtering. The
size of the rectangle region is set to 2rOD img × 6rOD img The
OD candidate with the maximum contrast (maximum standard
deviation) in the region after matched filtering is determined to
be the OD location (see Fig. 4).

C. OD Segmentation Algorithm

In some retinal images, the OD boundary may appear blurry
and faint due to light scatter caused by a cataract or operator
errors in the image acquisition. To address this problem, we
apply a fast, hybrid level set segmentation model [32], which
combines the region information and local edge vector to drive
the deformable contour converging to the true OD boundary.
For a more robust performance, prior to segmentation, a series
of gray-scale morphological operations are applied for blood
vessel and bright region removal in the ROI. These techniques
are described next.

1) Image Preprocessing: There are several issues that need
to be addressed prior to OD segmentation. In what follows,
we provide methods for detecting red channel saturation and
removing artifacts/distractors prior to segmentation.

a) Saturation detection in the red channel: In the red
channel, the OD often appears with the most contrast against
the background, while vessels appear less prominently. Thus, the
OD segmentation algorithm is performed in red channel. Unfor-
tunately, in some images, the red channel is saturated around the
OD. This phenomenon can lead to significant degradation in per-
formance of the OD boundary segmentation algorithm. To avoid
this issue, we first detect saturation in the red channel based on
the statistics of the red channel ROI. The OD segmentation ROI
is a cropped subimage with the size of 6rOD img × 6rOD img
centered at the detected OD location. The ROI area is ap-
proximately 10 times larger than the area of the OD. This
means that the 90th percentile value approaches the maximum
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Fig. 4. OD localization examples. First column: Input retinal images. Second column: Background normalized CIElab lightness images. Third column: OD
candidates (green) and detected OD location (red) on matched filtering response images. Fourth column: Results of OD localization.

intensity value in the ROI. If the red channel is saturated, there
will be a large number of bright pixels in the ROI. This leads
to the following red channel saturation detection rule. If half of
the pixels in the ROI (50th percentile value) are brighter than
the 80% of the maximum intensity value in the ROI, the red
channel is assumed to be saturated. If this is the case, then the
OD segmentation is performed in the CIElab lightness image.

b) Blood vessel removal: Interference of blood vessels is
one of the main difficulties in accurate OD boundary segmenta-
tion. ASF is used to perform morphological close-open filtering
with a series of structural elements of increasing size, which

allows us to remove vessels while retaining the shape of the
papillary region. We start with a symmetrical disk structural el-
ement of a radius, which is larger than the widest main vessel
width in the OD region. To get a more homogeneous OD region,
we use successively larger structural elements (by 10 pixels) and
compute the final image using

g(x, y)=γ(Bn )
opn {ϕ(Bn )

clo [. . . γ(B1 )
opn (ϕ(B1 )

clo )f(x, y)))]}n = 3 (9)

where ϕ
(Bi )
clo = f(x, y) � (Bi) is a closing with structural el-

ement Bi , and γ
(B i)
opn = f(x, y) � (Bi) is an opening with
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Fig. 5. Choroidal vessel removal before OD segmentation. (a) Choroidal ves-
sels presented in the red channel. (b) Result after ASF to remove vessel∗. (c)
Removal of bright regions other than the OD∗. ∗Contrast stretching was applied
to the images for illustration purpose.

structural element Bi . Given the significantly larger size of the
OD, the disk boundary is preserved through the use of ASF.

c) Bright region removal: In the OD segmentation ROI,
areas containing features with bright pigmentation, such as
choroidal vessels, exudates, and cotton wool spots may interfere
with the OD boundary segmentation. We use morphological re-
construction to suppress the bright regions that are lighter than
their surroundings and are also connected to the image border.
Fig. 5 shows a retinal image where the bright, dense, net-like
choroidal vessels are presented in the peripapillary region. The
unwanted bright regions, which are connected to the ROI bor-
der after ASF, were removed by using morphological recon-
struction. The shape of the papillary region remains unchanged,
except for a small region on the boundary (at the inferior nasal,
i.e., lower left, corner) where the blood vessels occupied origi-
nally in the input image.

We use the original image f(x, y) as the mask, and the marker
image fmk (x, y) is defined as

fmk (x, y)=
{

f(x, y), if pixel (x, y)is on the border of f(x, y)

0, otherwise.
(10)

Morphological reconstruction is the repeated dilation of the
marker image until the contour of the marker image fits under
the mask image. The single reconstruction step can be defined
as

δ
(B )
i (fmk |f) = (fmk ⊕ B) ∩ f. (11)

where B is a structural element defined by connectivity. If 8-
connectivity is used, the structural element is a 3 × 3 matrix of
1 s.

The reconstruction of f(x, y) from marker fmk(x, y) is de-
fined as

f̂(x, y) = Rf (fmk) = δ(B )
n · · · δ(B )

1 (fmk |f). (12)

The sequential dilation is repeated until there is no further
change between iterations. Rf (fmk) includes the bright regions
adjacent to the ROI border. The set difference f − Rf (fmk)
contains only the regions that do not touch the border in the
original image, as shown in Figs. 5(c) and 6(d). The morpho-
logical reconstruction also removes bright lesions in the ROI
(e.g., cotton wool spots as shown in the right column images of
Fig. 6 and exudates as shown in Fig. 12, the first row).

Fig. 6. OD segmentation examples. Left column: Segmentation on the red
channel. Right column: Segmentation on the CIElab lighntness image. (a)I
Input retinal images. (b) Left: Red channel image. Right: CIElab lightness
image. (c) Images after ASF to remove vessel∗. (d) Removal of bright regions
other than the OD∗. (e) Segmentation results (green: ellipse fitting, blue: level
set segmentation, red: reference standard). ∗Contrast stretching was applied to
the images for illustration purpose.
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2) Fast, Hybrid Level Set Model: The level set methodology
was first proposed by Osher and Sethian [33]. The basic idea is
to embed a propagating front implicitly as the zero level set of
a higher dimensional function ϕ(x, y, t). It has been shown that
the evolution equation for ϕ(x, y, t) is obtained by

∂ϕ

∂t
+ �F |∇ϕ| = 0

with the initial condition ϕ(x, y, t = 0) = ϕ0(x, y).
The expression of the speed function �F depends on the differ-

ent applications. It may include many factors: local properties
of the front, such as normal direction and curvature, global
properties of the front, such as shape and position, and other in-
dependent external forces based on image properties that drive
the propagation of the front.

A hybrid level set model was proposed in our previous study
of cardiac ultrasound image video segmentation and given as
[34]

∂ϕ

∂t
= gεk|∇ϕ| − (1 − s(x, y))[β1((u(x, y), v(x, y)) · ∇ϕ)]

+ s(x, y)β2∇g · ∇ϕ (13)

where the level set front is driven by the internal force curvature
k and the external forces: the GVF (u(x, y), v(x, y)) [35] or the
edge vector∇g. Here, g is defined as an enhanced edge indicator
applied to the Gaussian smoothed image given by

g(x, y) =
1

[1 + (|∇(Gσ (x, y) ∗ I(x, y))|/γ)2 ]
(14)

where γ is a constant coefficient.
The GVF allows the curve to have relatively free initializa-

tion and quick deformations at the homogenous region at the
beginning of deformation. Later, when the curve approaches the
object boundaries, the edge vector field dominated the deforma-
tion to reduce edge leaking. s(x, y) is a step function defined
as

s(x, y) =
{

0, Aveϕ(x,y ,t)=0(e(x, y)) < Tres

1, Aveϕ(x,y ,t)=0(e(x, y)) ≥ Tres
(15)

where e(x, y) is an image edge map function defined by

e(x, y) =
(
|∇(Gσ (x, y) ∗ I(x, y))|

ρ

)2

. (16)

The value of s(x, y) is determined by the average of the edge
map over the current zero level-set at each iteration.

Since GVF is computed as a spatial diffusion of the gradient of
the edge map of an image, it is computationally time consuming
and the GVF model is subjected to leakage problem at the poor
edges where the edge map cannot be well defined. In order to
meet the requirement of quick and robust OD segmentation in
retinal images, we used region information instead of GVF in
the hybrid level set model, as suggested by Zhang [32]. Region-
based model was originally proposed by Chan and Vese [25],
which is extremely effective to detect objects with fuzzy, smooth
boundaries, which could not be well defined by gradient.

The new hybrid level set model is not only as robust to its
curve initialization as the GVF hybrid model but also adds a

more powerful stopping function at weak edges by using re-
gion intensity information besides the edge force. The curve
evolution partial differential equation (PDE) is given by

∂ϕ

∂t
= gεk|∇ϕ| + β1(1 − λ)|∇ϕ| + β2∇g · ∇ϕ. (17)

The first term on the right-hand side in (17) is a front evolution
driven by the internal curvature k. The second term represents
a deformation driven by the region information I. For a bright
target object, it indicates an expansion movement for the parts of
the curve inside the object if I > λ and a contraction movement
for the parts of the curve outside the object if I < λ. The pre-
defined threshold λ is the lower bound of the bright OD region
intensity. The third term is the edge vector that helps to stop the
evolving curve at the OD boundary. ε, β1 , β2 are the parameters
to control the balance of the forces.

Zhang et al. [32] used a fast and unconditionally stable finite
difference method to solve the aforementioned PDE. It is called
the additive operator splitting (AOS) approach [36].

To use the AOS approach, we simplify the PDE (17) into

∂ϕ

∂t
= α(1 − λ) + β div(g∇ϕ) (18)

where ϕ is a signed distance function (SDF) defined in the
level set model, i.e., |∇ϕ| = 1, using α = β1 , β = ε = β2 , and
k = div(∇ϕ/|∇ϕ|), The PDE (18) is then solved efficiently by
using the AOS approach.

The threshold λ should be set at the lower bound of the OD
region intensity. We set the value of λ based on the contrast
estimation in the ROI using

λ = μ + cσ (19)

where μ and σ are the mean and standard deviation of the
ROI intensity after preprocessing, and c is a coefficient set as
described next. Since the OD only occupies less than one-tenth
of ROI, the mean intensity of the ROI is dominated by the
intensity of the background. We consider 1 < c < 3 to make
the threshold λ higher in order to distinguish the OD from the
background.

Fig. 6 shows the segmentation results of two sample images
using the red channel and the CIElab lightness image, depending
on the saturation condition. The OD is surrounded by PPA in
the left image and cotton wool spots are presented in the right
image in (a). Good segmentation results were achieved by using
the proposed morphological preprocessing and the fast, hybrid
level set model.

3) Segmentation Parameter Optimization: It is important to
optimize the parameters, since we observed that the model per-
formance is sensitive to the parameter setting. Zhang et al. [32]
developed this model on head-and-neck CT images without
specifying how to choose appropriate values for the threshold
and parameters. Other researchers [21], [22], [24] who have
used active contour models set the parameters heuristically.

The hybrid model requires presetting a single region threshold
λ. As stated previously, there is great variation in OD appear-
ance, and the contrast between the OD and the background may
vary substantially. Even if the threshold λ is set based on the im-
age contrast estimation, we still need to predefine the coefficient
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Fig. 7. Parameter optimization for the high contrast OD segmentation. (a) ROI image. (b) Red channel parameter surface as a function of α and β for six different
values of c. c = 1.0 with minimum MAD of 1.6 pixels (α = 0.21, β = 46.41). (c) CIElab lightness parameter surface. c = 1.0 with minimum MAD of 3.9 pixels
(α = 10, β = 46.41).

Fig. 8. Parameter optimization for the low contrast OD segmentation. (a) ROI image. (b) Red channel parameter surface as a function of α and β for six different
values of c. c = 1.25 with minimum MAD of 7.0 pixels. (α = 0.21, β = 46.41). (c) CIElab lightness parameter surface. c = 1.99 with minimum MAD of 17.8
pixels (α = 10, β = 46.41).

Fig. 9. Segmentation examples (rOD im g = 100 pixels). (a) Excellent, MAD = 3.0 pixels. (b) Good, MAD = 8.2 pixels. (c) Moderate, MAD = 14.7 pixels. (d)
Fair, MAD = 21.6 pixels. (e) Poor, MAD = 93.4 pixels (green: ellipse fitting, blue: level set segmentation, red: reference standard).

c in order to obtain an accurate segmentation. The parameters α
and β can also affect the performance of the model. For example,
if the value of α is too small, the evolution front may not be able
to converge on the true boundary quickly. For very high values
of β, the evolving curve may pass through the true boundary,
a result of leakage at the weak, blurry edges. Furthermore, the
values of the parameters may affect the model performance in
an interrelated and complex way. Therefore, it is necessary to
consider the possible values in a large range for the parameters
in the optimization.

We used a logarithmic sampling, which generates logarith-
mically spaced values and covers a wide range of possible
values of the parameters. Logarithmic sampling does capture
the variation in the data while requiring fewer samples than
linear space sampling. The coefficient c is set as c = [1.00,
1.25, 1.58, 1.99, 2.51, 3.16] to cover the sampling values be-

tween 1 and 3. Logarithmic scale sampling is also considered
for α and β. A total of ten different values per parameter are
set as [0.10, 0.21, 0.46, 1.00, 2.15, 4.64, 10.00, 21.54, 46.41,
100.00] to represent the changes in a wide range of values for the
parameters.

To evaluate segmentation performance for each parameter
combination, two representative test images were selected, one
with high OD contrast and another with low OD contrast and
strong vessel interference. Parameter optimization was per-
formed both on the red channel and CIElab lightness for each
image. The mean absolute distance (MAD) between the refer-
ence standard and the automatically segmented boundaries is
used to determine the optimal parameters. Figs. 7 and 8 show
the images and the optimization plots for the red channel and
CIElab lightness images. For better visualization, we plot the
parameter surfaces in term of the inverse of MAD (i.e., 1/MAD).
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Fig. 10. Robustness to curve initialization. (a) ROI image (rOD im g =
100 pixels) with segmentation initialization in green, reference standard in
white. (b) Segmentation result, MAD = 8.3 pixels (green: ellipse fitting, blue:
level set segmentation, red: reference standard).

Fig. 11. Blurred OD boundary segmentation. (a) ROI image (rOD im g =
70 pixels). (b) Segmentation result, MAD = 6.9 pixels (green: ellipse fitting,
blue: level set segmentation, red: reference standard).

This suggests that the best parameters are the ones that make
1/MAD reach the highest value.

For the high contrast OD image, the minimum MAD is
achieved for α = 0.21, β = 46.41, c = 1.0 in the red chan-
nel and α = 10, β = 46.41, c = 1.0 in CIELab lightness (see
Fig. 7). The large difference in α values suggests that the curve
needs to be driven by a stronger region force in the lightness
image than in the red channel image, since the lightness images
have lower contrast than the red channel image. We reach a sim-
ilar conclusion for the low OD contrast images. The minimum
MAD is achieved for α = 0.21, β = 46.41, c = 1.25 in the red
channel and α = 10, β = 46.41, c = 1.99 in the CIELab light-
ness (see Fig. 8). By comparing the coefficient c for both the red
channel and the CIElab lightness images, we note that the coeffi-
cient c is larger in the CIElab lightness image segmentation than
in the red channel image. Based on the aforementioned parame-
ter optimization analysis, we obtained the optimum parameters
listed in Table I. For achieving reasonable performance over a
wide range of images, we adjusted the value of coefficient c to
be the average of the optimal coefficient values estimated for
both the high OD contrast and low OD contrast images.

It is interesting to note that the optimization level is relatively
flat within a certain region of the α − βplane in the four pa-
rameter surface plots shown in Figs. 7 and 8. In particular, the
heuristically derived parameters given by α = 10, β = 1 (used

Fig. 12. Segmentation examples of challenging cases (green: ellipse fitting,
blue: level set segmentation, red: reference standard).

TABLE I
OPTIMIZED PARAMETERS FOR HYBRID LEVEL SET MODEL

in our earlier investigations [37]) are within the flat region,
which gives suboptimal performance.

4) Least-Square Ellipse Fitting: The curvature is used to
define an internal force to make the evolving contour smooth
during the hybrid level set model deformation. The final curve
may still appear irregular due to the influence of strong blood
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TABLE II
OD DETECTION FOR THE NUMBER OF IMAGES IN EACH RETINAL PATHOLOGY

GRADE AND NUMBER OF FAILURES GIVEN IN PARENTHESIS

vessels. To provide for a smooth contour, we fit the segmented
OD boundary with an ellipse using the least-squares optimiza-
tion. This step generates smooth OD borders that can be used for
cup-to-disk ratio computation in glaucoma analysis for future
study.

III. RESULTS

A. Datasets

The MESSIDOR database was created to facilitate studies
on computer-aided diagnoses of DR (http://messidor.crihan.fr).
The database contains 1200 color fundus images of the posterior
pole acquired by three ophthalmologic departments using a color
3CCD camera on a Topcon TRC NW6 nonmydriatic retinograph
with a 45◦ FOV. Eight hundred images were acquired with pupil
dilation (one drop of Tropicamide at 10%) and 400 without
dilation. The images were captured at three different image
sizes: 1440 × 960, 2240 × 1488, and 2304 × 1536 pixels.

Two diagnoses were provided for each image: grade of DR
and risk of macular edema. There are four grades for retinopathy.
Grade 0 means no retinopathy, grades 1 and 2 correspond to
patients with nonproliferative retinopathy (NPDR), and grade
3 corresponds to patients with severe NPDR or proliferative
DR. There are three grades for risk of macular edema. Grade 0
corresponds to normal images (no visible hard exudates), grade
1 to images with exudates located more than 1 disk-diameter
away from the fovea, and grade 2 to images with exudates
located within 1 disk-diameter of the fovea (highest risk of
macular edema).

The OD boundary reference standard for the 1200 images
is publicly available and kindly provided by the University of
Huelva, Spain (http://www.uhu.es/retinopathy) [26]. They di-
vided the database into four subsets and each subset was graded
by a different single observer using computer software.

B. OD Localization

The results of OD detection in this study were obtained based
on the original input image resolution. If the detected OD center
is within the circumference of the OD in the reference standard,
then it is considered to be a successful detection. The algorithm
correctly located the OD in 1189 out of the 1200 images, a
success rate of 99.1%. Table II presents the results according to
the level of retinopathy and the risk of macular edema graded
by the MESSIDOR specialists.

Fig. 13. OD detection failure examples. (a) Large myelinated nerve fiber. (b)
Extra-large and bright PPA overshadows the OD. (c) Retinal image with grade
3 DR and grade 2 risk of macular edema.

There are 11 images in which the algorithm did not accu-
rately locate the ODs. This was due to three factors: 1) ad-
vanced stage of retinopathy and presence of exudate clusters
(four images), 2) large myelinated nerve fibers adjacent to the
OD, which were much brighter [two images, an example is
shown in Fig. 13(a)], 3) severe peripapillary atrophies, whose
size and brightness completely overshadowed the OD [five im-
ages, an example is shown in Fig. 13(b)]. In other cases, the
OD was selected in the candidates regardless of the presence
of myelinated nerve fibers and peripapillary atrophies in the
images, and the proposed OD detection algorithm worked well
(see Fig. 4, the second and third row).

C. OD Segmentation

The initial contour of the deformable model is automatically
set as a circle with the center at the detected OD location and the
radius as the estimated OD radius rOD img . The performance
of the OD segmentation algorithm is quantitatively evaluated
using the MAD. MAD measures the average difference between
two contours, and is obtained by averaging the distance to the
closest point (DCP) of all the points on the two curves. If two
curves Γ1 and Γ2 can be represented as finite sets of points
Γ1 = (n1 , n2 , . . . , np) and Γ2 = (m1 ,m2 , . . . ,mq ), The DCP
for ni on the curve Γ1 to the curve Γ2 is defined as

d(ni,Γ2) = min
j

||mj − ni ||. (20)

The MAD between the two curves is defined as follows:

M(Γ1 ,Γ2) =
1
2

⎡
⎣1

p

p∑
i=1

d(ni,Γ2) +
1
q

q∑
j=1

d(mj ,Γ1)

⎤
⎦ .

(21)
To evaluate the OD segmentation algorithm independently of
OD detection, OD centers were manually located for the 11
images in which the OD localization fails. For the optimized
results, we use the optimal parameters obtained by following
the optimization method that we described in Section II. Only
the coefficient c was slightly tuned for the images acquired
from three different ophthalmologic departments. We note that
evaluating the algorithm performance in terms of MAD in pixels
alone is not informative unless the size (and, hence, resolution)
of the image being analyzed is given. Instead of using MAD
alone, we use the ratio of MAD and the estimated OD radius
for our algorithm evaluation. Table III shows the evaluation
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TABLE III
OD SEGMENTATION EVALUATION USING THE RATIO OF MAD OVER THE

ESTIMATED OD RADIUS (1200 IMAGES)

results on 1200 images from MESSIDOR database, without
excluding any images for poor quality. Qualitatively, we use five
categories of segmentation quality (Excellent, Good, Moderate,
Fair and Poor), as defined by other investigators in [22] and [24],
depending on the ratio of MAD and the OD radius rOD img .
Fig. 9 shows examples in each category. The ratio of MAD
and OD radius corresponds reasonably well to the qualitative
assessment of segmentation quality. Table III shows that MAD
is not larger than one-tenth of the OD radius for 68% of 1200
images, corresponding to the excellent to good segmentation
quality. MAD is less than or equal to one-third of the OD radius
for 97% of the images in the database, corresponding to the
excellent to fair quality range. The average MAD of 1200 images
was 10.1% of the OD radius, regardless of the different image
sizes in the database.

An example of the robustness of the fast, hybrid level set
model to the curve initialization is shown in Fig. 10. The auto-
matically initialized contour intersected the OD boundary, due
to the offset between the located OD and true OD center. The
fast, hybrid level set model has the ability to drive the con-
tour to enclose the regions with intensities greater than certain
threshold value even though the initialization is not “perfect.”
Our segmentation model is robust in regard to the variations in
segmentation initialization from the prerequisite detected OD
locations, compared to previous active contour models reported
in [21] and [22].

The algorithm also performs well on the images with a blurred
OD margin due to severe cataracts (see Fig. 11). Thanks to the
region intensity information in the fast, hybrid level set model,
the evolving contour converges to the true OD boundary even
in the indistinct, blurred OD images.

Fig. 12 shows the segmentation results for a few challenging
cases. The first row presents an example of fuzzy boundary at the
bottom of disk with exudates in the ROI. The second row shows
an example of optic nerve hypoplasia, an underdevelopment
of tissue, with a crescent region adjacent to the disk. Vitreous
strands cause traction on optic nerve head vessel in the third row
of images. The last row presents an example of PPA.

The segmentation results shown in Fig. 12 indicate that with
carefully designed preprocessing morphological techniques, the
fast, hybrid level set algorithm, which combines the region in-
formation and local image gradient, performs well on these
difficult cases.

TABLE IV
CORRELATION COEFFICIENTS BETWEEN DIFFERENT BINARY TEMPLATES

IV. DISCUSSION

A. Template Design in OD Detection

Several researchers have applied different templates to de-
tect the OD location [11], [12], [22]. We investigated the effect
of different templates in OD detection. There is no observed
significant performance improvement using a particular binary
template. This conclusion was verified by the computation of
correlation coefficient between the different templates. We de-
signed four binary templates shown in Fig. 3. The black bands
inside the white disk approximate the main vessels inside the
OD in order to improve template matching performance. The
correlation coefficients Rcc between the different templates are
shown in Table IV. If we compare the first template (a) with the
other three templates [(b)–(d)], the lowest Rcc is 0.85, which
indicates there is no significant difference between these tem-
plates. This conclusion is also verified by our experiment results.
We used the second template (b) in our OD detection. This tem-
plate is the same as the one used by Lowell et al. [22], which is
composed of the Laplacian of Gaussian with a vertical channel
in the middle to correspond to the main vessel band in the OD.
Since the vertical black band in the template may have a false
high correlation to the OD margin at the temporal side, instead
of the main vessels inside the OD, when uneven brightness was
present in the OD region, the template (b) did not exhibit a better
performance than the template (a) in OD detection.

The advantage of our OD detection methodology is that we
exploit the vessel characteristics within the OD after template
matching. This technique increases the robustness and accuracy
of OD detection.

It should be noted that our OD detection algorithm fails in
well-understood circumstances. First, the algorithm fails on reti-
nal images in which the OD is darker than the surrounding pix-
els, such as when a large, very bright myelinated nerve fibers
or severe PPA is adjacent to the OD [see Fig. 13(a) and (b)].
Second, advanced DR and bright exudates clusters affect the
accuracy and success of our algorithm. An example image with
grade 3 DR and grade 2 risk of macular edema is shown in
Fig. 13(c). Third, the algorithm cannot deal with retinal images
where the OD does not appear as a circular brightness structure
and main vessels are not presented in OD region (for example,
images with the advanced stage of papilledema).

The proposed OD localization methodology provides suf-
ficient accuracy and speed for high workloads in automatic
eye screening. The average running time was 4.7 s per image
(1440 × 960) on an Intel Xeon CPU W3520, 2.67 GHz, 6 GB
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RAM computer. The algorithm was implemented in MATLAB
R2010b (MathWorks).

B. OD Segmentation Comparison

To compare the results obtained by Aquino et al. [26] on the
same database (MESSIDOR), we also compute the overlapping
ratio between the segmented OD areas As and the OD regions
Ag marked in reference standard, defined as

R =
As ∩ Ag

As ∩ Ag
. (22)

The average area overlapping ratio between the automatic seg-
mented OD boundary and the reference standard for the 1200
images is 84.4%, which is slightly lower than the ratio of 86%
obtained by using the circle Hough transform method proposed
by Aquino et al. [26]. The deformable model-based approach is
sensitive to nonhomogeneousness, and the irregular boundary
of the object. Therefore, our deformable model generates more
accurate OD segmentations than the circle Hough transform
when the OD boundaries have good to fair intensity contrast
(see Fig. 14, the first and second row images). It also performs
well on images with blurred OD (see Fig. 11). However, if
blurry, low contrast ODs are accompanied with very dark vessel
branches on the OD, the contrast and brightness of the OD bor-
der were decreased largely after morphological vessel removal,
due to the darkness of the vessels. The segmented OD bound-
ary may deviate from the true OD margin due to the sensitivity
to low-contrast object of the deformable model (see Fig. 14,
the third and fourth row images). In contrast to the deformable
models, the circle Hough transform method [26] performs bet-
ter in such cases, since only portions of the OD border were
needed to obtain a fitting circle with a certain radius, which cor-
responds to the highest number of votes in the parameter space.
Although the circle Hough transform method turns out to be a
more reliable solution by matching circles on images with low
contrast ODs and dark vessels, it is not able to provide sufficient
accurate quantitative measurements of the OD boundary for OD
pathological change analysis overall, e.g., glaucoma. The level
set model offers a more accurate approach for glaucoma analy-
sis, which is normally preformed on OD-centered images with
better OD contrast conditions. Both the hybrid level set model
and the circle Hough transform approach are sensitive to bright
myelinated nerve fibers adjacent to the OD (see Fig. 14, the fifth
row images). To the best of our knowledge, these cases could
affect most disk boundary segmentation algorithms.

In order to compare the computer-to-observer agreement and
the interobserver agreement, 100 images were randomly se-
lected from the database. The OD boundaries of these images
were manually marked by an ophthalmologist independently.
The average MAD, Hausdroff distance, and the overlapping ra-
tio as well as standard deviations obtained by comparing the
segmentations between the reference standard (grader 1), the
grading provided by the ophthalmologist (grader 2), and the au-
tomated method are listed in Table V. The Haudorff distance
measures the maximum difference between the corresponding
points on the two curves. The values of the three segmentation

Fig. 14. OD segmentation comparison. (a) Retinal images. (b) Segmentation
by Aquino et al. [26] (http://www.uhu.es/retinopathy/disco_optico2.php). (c)
Segmentation by the proposed method (green: ellipse fitting, blue: level set
segmentation, red: reference standard). In the fourth rows, the OD boundary
marked in reference standard (red) is inaccurate due to the tilted OD.

TABLE V
COMPARISON OF OD BOUNDARY SEGMENTATIONS

metrics in Table V indicate that the computer-generated bound-
aries differ from the manually outlined boundaries slightly larger
than the manually outlined boundaries differ from one another.

We used the William agreement index to present how each
grader can be compared with the set composed of the remaining
two graders by adding the automated method’s segmentation as
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Fig. 15. Williams agreement index (using overlapping ratio as similarity
measure).

TABLE VI
WILLIAMS AGREEMENT INDEX WITH 95% CONFIDENCE INTERVAL

FOR OD SEGMENTATIONS

a third observer’s grading [38], [39]. William index is defined
as

WIi =
(n − 2)

∑n
j 
=i Rij

2
∑n

j 
=i

∑j−1
k 
=i Rjk

where Rij is the overlapping ratio (i.e., similarity measures) for
a pair of segmentations and n is the number of graders (seg-
mentations). The William index computes the ratio between the
average agreement between one grader (e.g., grader i), each
of the remaining graders and the average interobserver agree-
ment except grader i. Fig. 15 shows the William indices of three
graders, if the automated approach is counted as the third grader.

The average William indices and 95% confidence intervals
(CI) of the grader 1, 2, and the automated method are shown in
Table VI. The CI for the index was estimated using a jackknife
nonparametric sampling technique [40]. This sampling proce-
dure was implemented by leaving out one of the images at a
time and computing the Williams index using the overlapping
ratio for N− 1 images. If the upper limit of the 95% CI is greater
than the value one, we can conclude that the individual grader
agrees with the group at least as well as the group members
agree with each other [41]. Here, the upper limit of the CI of the
automated method is 0.98, the automated method agrees with
the two human graders nearly as well as the two human graders
agree with each other.

The average computation time for OD segmentation was 6.6 s
per image (1440 × 960) with the same computer and software
specified in the OD detection discussion. Considering the fact
that the high accuracy of manual segmentation was obtained
at a cost of long hand-segmenting time and heavy work load,
the proposed automated method has the advantage of providing
up to 10 times faster speed with sufficient accuracy to meet
automatic analysis system requirements.

V. CONCLUSION

A new, fast, and robust OD localization and segmentation
methodology for retinal image screening has been developed.
The OD localization methodology adaptively changes the tem-
plate size based on the OD radius estimation, using the camera
FOV and the image resolution. The methodology not only ex-
ploits the appearance features of the OD, but also main vessel
orientation inside the OD, to increase robustness. The OD seg-
mentation method uses ASF and morphological reconstruction
to remove vessels and bright region distractors while retaining
the shape of the papillary region. The fast, hybrid level set model
uses both region information and local edge vector with sim-
ple automatic initialization to achieve robust, fast, and accurate
segmentation. The model parameters are optimized for the best
segmentation performance.

The future automatic eye disease screening system will have
to be robust, fast, and provide high accuracy rates in order
to support high workloads and near-real-time operation. The
methodology developed herein has been designed to satisfy
these requirements. The robustness and efficiency makes this
methodology suitable for assisting automatic screening for early
signs of eye diseases.
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