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a  b  s  t  r  a  c  t

In  this  work,  multi-scale  amplitude  modulation–frequency  modulation  (AM–FM)  features  are  extracted
from  surface  electromyographic  (SEMG)  signals  and  they  are  used  for the classification  of neuromuscular
disorders.  The  method  is  validated  on SEMG  signals  recorded  from  a total  of  40  subjects:  20  normal  and
20 abnormal  cases  (11 myopathy,  and  9 neuropathy  cases),  at 10%,  30%,  50%,  70%  and  100%  of  maximum
voluntary  contraction  (MVC),  from  the biceps  brachii  muscle.  For  the  classification,  three  classifiers  are
eywords:
M–FM
EMG
lassification

used: (i) the  statistical  K-nearest  neighbor  (KNN),  (ii)  the  self-organizing  map  (SOM)  and  (iii) the  support
vector machine  (SVM).  For  all classifiers,  the  leave-one-out  methodology  is  used  to  validate  the  classifi-
cation  of the  SEMG  signals  into  normal  or  abnormal  (myopathy  or neuropathy).  A  classification  success
rate  of  78%  for  the  AM–FM  features  and  SVM  models  was  achieved.  These  results  also  show  that  SEMG  can
be used  as  a non-invasive  alternative  to needle  EMG  for differentiating  between  normal  and  abnormal
(myopathy,  or neuropathy)  cases.
. Introduction

The electromyographic (EMG) examination provides important
nformation for the assessment of neuromuscular disorders and
s generally carried out using needle electrodes. However needle
lectrodes put the patients under considerable pain and discom-
ort, as well as the risk of infection. In addition, constant expert
upervision is necessary, which renders the whole process quite
engthy. In paediatric examinations and tests in particular, there
re even more difficulties in using needle electrodes, and long term
onitoring is quite difficult [1].  Surface electrodes and the acqui-

ition of surface EMG  signals provide a non-invasive alternative
o needle EMG for the detection of neuromuscular disorders. At
resent, a surface detected signal is preferred only for obtaining
lobal information about the time and/or intensity of superficial
uscle activation [1].
In previous work [2–7] it was shown that time and frequency

omain features extracted from the EMG  signals can be used
Please cite this article in press as: C.I. Christodoulou, et al., Multi-scale AM–F
Biomed. Signal Process. Control (2012), doi:10.1016/j.bspc.2012.01.001

uccessfully for the classification and the identification of neuro-
uscular disorders. Abel et al. [3],  found a percentage of correct

lassifications of 75% when 12 normal subjects were compared
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with 18 myopathy and 15 neuropathy patients examined with nee-
dle EMG. Turns analysis and small segments analysis were used.
A turn was  counted if the amplitude difference between adja-
cent turning points was  at least 100 �V, whereas a small segment
was defined when the time interval between turns was  equal or
less than 1.5 ms  in duration. However authors concluded that the
classification methods used, did not offer better results than the
interference pattern analysis and could not by any means match the
diagnostic success of an experienced clinician. Christodoulou et al.
[4] developed a modular neural networks system where multiple
features extracted from needle EMG  signals were fed into multi-
ple classifiers for the assessment of 12 normal subjects, 13 subjects
suffering with myopathy and 15 subjects suffering with motor neu-
ron disease, reaching a diagnostic yield of 87.5%. Abou-Chadi et al.
[5] used three versions of neural networks to facilitate automatic
classification of SEMG. With unsupervised techniques, the correct
classification score reached 80%, when five normal subjects and five
myopathy subjects were selected from a pool of 14 normal subjects
and 14 patients. Recordings were performed for 5 s at 50% MVC.
Abou-Chadi et al. [5] reached the conclusion that when SEMG is
properly processed, it may  provide the physician with a diagnostic
assisting tool. In another SEMG study, Kaplanis [6] reached a cor-
rect classifications score of 82.9%, when 91 control subjects and 20
M analysis for the classification of surface electromyographic signals,

pathogenic cases were placed in a pool of subjects (results were
normalized based on the number of subjects for each group). In a
recent work Istenič et al. [7] used multiscale entropy of recorded
SEMG and support vector classification on a similar database. In

dx.doi.org/10.1016/j.bspc.2012.01.001
dx.doi.org/10.1016/j.bspc.2012.01.001
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:cschr2@ucy.ac.cy
dx.doi.org/10.1016/j.bspc.2012.01.001


 ING Model

B

2 al Pro

t
a
v

u
(
A
(
H
s
a
t
b
n
t
o
p
t
t
g
A
f
A

f
c
K
(
t
o

t
t
t
g
S

2

j
(
fi
a
t
a
d
d
i
t
t
V
T
i
i

o
j
s
d
s
(
f
a
w

ARTICLESPC-305; No. of Pages 5

C.I. Christodoulou et al. / Biomedical Sign

hree-class classification with 9 subjects per class, they reached an
ccuracy of 70.4%, whereas in two class-classification with 9 normal
s 18 abnormal subjects they achieved 81.5%.

In this work, we investigate the use of new feature sets extracted
sing multi-scale amplitude–modulation frequency-modulation
AM–FM) representations [8–10]. Our motivation for pursuing
M–FM features comes from the fact that they can capture local

instantaneous) variations in amplitude, frequency, and phase.
ere, three sets of AM–FM features are estimated from the SEMG

ignals at various scales and force levels: (i) the instantaneous
mplitude, (ii) the instantaneous frequency, and (iii) the instan-
aneous phase. We  use the term scale to refer to a collection of
andpass filters [10]. Within each scale, a single AM–FM compo-
ent is estimated. We  also use the term multi-scale AM–FM analysis
o refer to AM–FM components extracted from the combination
f different scales. A significant distinction of the AM–FM analysis
roposed in the current paper over prior work is the relaxation of
he requirement to have multi-scale analysis using band-pass fil-
ers that cover continuous-intervals in the frequency-domain. This
eneralized approach allows finer control over the extraction of
M–FM features. Thus, in this paper, we consider the use of dif-

erent combinations of bandpass filters for generating multi-scale
M–FM components.

For each of the AM–FM components, we compute the AM–FM
eature histograms and use them as inputs to the classifiers. For the
lassification, three classifiers are implemented: (i) the statistical
-nearest neighbor (KNN) classifier, (ii) the self-organizing map

SOM) and (iii) the support vector machine (SVM). For all classifiers
he leave-one-out methodology is used to validate the classification
f the SEMG signals into two classes, i.e. normal or pathogenic.

We provide a description of the data acquisition process in Sec-
ion II. In Section III we describe the extraction algorithms for
he time and frequency features and the AM–FM features. In Sec-
ion IV, we present results using the three different classifiers. We
ive the results in Section V and provide concluding remarks in
ection VI.

. Material and data acquisition

Surface EMG  recordings were acquired from 20 control sub-
ects (NOR) and 20 subjects suffering from neuromuscular disorders
11 myopathy and 9 neuropathy cases). Patients referred were
rst examined and diagnosed by their physician and were divided
ccording to the general type of neuromuscular disorder (myopa-
hy or neuropathy). It should be emphasized that patients selected
nd referred for SEMG in this study were randomly selected and
id not present a homogeneous group, i.e. these patients were at
ifferent stages of the disease and did not have the same Med-

cal Research Council (MRC) score. The data were collected at
he Department of Clinical Neurophysiology at the Cyprus Insti-
ute of Neurology and Genetics, Nicosia, Cyprus [6].  The Nicolet
iking IV electromyography two-channel amplifier unit was used.
hrough the system, the low and high frequency values for record-
ng were set at 20 and 500 Hz respectively, and the amplifier input
mpedance was in excess of 1000 M�.

A calibrated force measurement system, with a total weight
f 40 kg was placed at the foot end of a couch, used for the sub-
ects to lie down. The weights were lifted via a strap placed at the
ubjects’ wrist and connected to the system through a force trans-
ucer, which was connected directly to a calibration circuit. The
ubject was required to pull at maximum voluntary contraction
Please cite this article in press as: C.I. Christodoulou, et al., Multi-scale AM–F
Biomed. Signal Process. Control (2012), doi:10.1016/j.bspc.2012.01.001

MVC) three times with an interval of 2 min  in between to avoid
atigue. The MVC  was marked on the oscilloscope and was  used as

 reference for monitoring the percentage force level. Recordings
ere made at five different force levels, i.e. at 10%, 30%, 50%, 70%
 PRESS
cessing and Control xxx (2012) xxx– xxx

and 100% of MVC  from the biceps brachii muscle carried out under
isometric voluntary contraction (IVC).

3. AM–FM feature extraction

For the purposes of this paper, we consider the use of new,
multiscale AM–FM representations that can be efficiently used to
describe non-stationary signal behaviour [10,11].  Here, we  express
each input signal using:

f (k) =
M∑

n=1

an(k) cos ϕn(k) (1)

where n = 1, 2, . . .,  M indexes the AM–FM components, an repre-
sents the nth instantaneous amplitude, and ϕn represents the nth
instantaneous phase. Here, AM–FM components are extracted over
a dyadic filter bank (see [10] for 2-D examples). In what follows, we
provide a step by step description of feature extraction.

First, we use the 1-D FFT to estimate the analytic signal fAS
[10]. This is accomplished by zeroing out all the negative fre-
quency components and then multiplying by 2 all remaining
FFT frequency components. The AM–FM signal is then filtered
through a dyadic filter bank. For example, for the 2-scale dyadic
filterbank we have bandpass filters with pass-bands of 0–125 Hz,
125–250 Hz, 250–500 Hz. For 3-scale filterbanks, we  sub-divide the
low-frequency band. Thus, for 3-scale filterbanks we have band-
pass filters with pass-bands of 0–62.5 Hz, 62.5–125 Hz, 125–250 Hz,
250–500 Hz, whereas for 4-scale filterbanks we have 0–31.25 Hz,
31.25–62.5 Hz, 62.5–125 Hz, 125–250 Hz, 250–500 Hz. Over each
channel filter, we  estimate the instantaneous amplitude (IA), the
instantaneous phase (IP) and the instantaneous frequency (IF) of
the signal using

a(k) =
∣∣fAS(k)

∣∣ , (2)

�(k) = arctan
(

imag(fAS(k))
real(fAS(k))

)
(3)

d�(k)
dt

∼= 1
n

arccos
(

fAS(k + n) + fAS(k − n)
2fAS(k)

)
. (4)

where in (4),  n is a variable displacement that can vary from 1 to
4, based on the argument that provides the minimum condition
number to arccos(·) function.

Over all of the resulting estimates, we also apply dominant com-
ponent analysis by only selecting the IA, IF, and IP estimates with
the maximum value of IA (see [10] for details). Here, it is important
to note that the extracted features are functions of the selected
channel filters. In our multi-scale AM–FM analysis example, we
consider different combinations of band-pass filters (channels)
from different filters. At each time-domain sample, we extract a
single set of AM–FM features, based on the channel that gives the
largest IA at each sample. We  then compute 32-bin histograms for
the IA, IF, and the IP.

From the generated AM–FM features, the histograms for 32
equal width bins were computed and were used as input feature
sets for classification. The histograms were further normalized by
division of the histogram with the number of SEMG signal points
in order to alleviate any bias due to different signals lengths. Fig. 1
shows an SEMG signal from a normal subject (only shown 1000
samples points for visibility) and its corresponding AM–FM his-
tograms.
M analysis for the classification of surface electromyographic signals,

4. Classification

The three 32 bins AM–FM histograms (i.e. 96 bins in total) were
used as input into the three different classifiers investigated. The

dx.doi.org/10.1016/j.bspc.2012.01.001
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Fig. 1. Sample of SEMG signal (in mV)  from a normal subject at 100% force level (top
row) and its corresponding AM–FM histograms (bottom row, where the y-axis rep-
resents the percentage frequency of occurrence of the corresponding components).
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he  first 32 samples represent the histogram of the instantaneous amplitude. This
s  followed by the histogram of the instantaneous phase and the histogram of the
nstantaneous frequency.

eave-one-out methodology was applied where for each input pat-
ern to be classified all the remaining patterns were used as the
raining set. The average of all classifications scores was the final
core. This made the classification procedure independent of boot-
trap sets and the results more robust and reliable.

We consider the following classifiers [9]:

The statistical k-nearest neighbor (KNN) classifier for several val-
ues of k (k = 1, 3, 5, 7, 9, 11, 13 and 15).
The self-organizing map  (SOM) classifier as an unsupervised
method [12].
The support vector machine (SVM) classifier using Gaussian
Radial Basis Functions [13].

From each subject, five feature vectors were calculated one for
ach force level and inputted to the classifiers. Furthermore the five
lassification outputs per subject were combined using majority
oting, i.e. the subject was assigned to the class where the majority
f the five individual SEMG signals per force level were assigned.
his was done in order to get a final and more reliable estimate
f the classification result, since as it was shown in [4] modular
eural networks system enhanced the diagnostic performance of
he individual classifiers making the whole system more robust and
eliable.

. Results

Surface EMG  recordings from 20 control subjects (NOR) and 20
euromuscular subjects (11 myopathy and 9 neuropathy) were
ecorded at 10%, 30%, 50%, 70% and 100% of maximum voluntary
ontraction (MVC), from the biceps brachii muscle. For each SEMG
ecording the AM–FM histogram features were extracted from the
nstantaneous amplitude (IA), instantaneous phase (IP), and the
nstantaneous frequency (IF). The IA, IP, and IF were normalized
y the signal length in order to alleviate any biases due to different
ignals lengths and their histograms were used as input to the three
lassifiers.

For extracting the multi-scale AM–FM features, we consider the
se of 3, 4 and 5 channel filterbanks. For comparison, we  performed
Please cite this article in press as: C.I. Christodoulou, et al., Multi-scale AM–F
Biomed. Signal Process. Control (2012), doi:10.1016/j.bspc.2012.01.001

ulti-scale AM–FM analysis using both the entire collection of
and-pass filters as well as using selected subsets of band-pass filter
ombinations. In considering subsets, we were particularly inter-
sted in combinations that included both low and high-frequency
 PRESS
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bands that avoided the common middle-bands. High-scale fre-
quency bands tend to follow short-term changes in the EMG  signal
and thus tend to describe subtle differences. On  the other hand,
low-scale frequency bands tend to follow long-term changes and
thus describe long-term trends in the signal. It should be noted that
all possible combinations with the middle frequency bands were
also investigated but gave poorer results in differentiating between
normal and abnormal cases. The combination of AM–FM features
from the low- and high- frequency scales was  found to better dif-
ferentiate between normal and abnormal cases. The combination
of low- and high-frequency scales for 4 scales gave the best results.
In what follows, we provide more details on the most promising
AM–FM features.

Fig. 2 displays boxplots of the instantaneous amplitude (IA)
and of the instantaneous frequency (IF) histograms for the nor-
mal  and abnormal classes. All figures are at 100% force level of
maximum voluntary contraction. In this example, we can see the
lack of any IF components that belong in the middle bands (e.g.,
no IFs in the 100–200 Hz range). In Fig. 2, it is interesting to note
the larger number of outliers in the abnormal case. It is also inter-
esting to note that the most significant differences appear in the
higher frequencies. In what follows, we  provide a more detailed
analysis of the AM–FM features that gave the most significant dif-
ferences.

Table 1 tabulates the results of the Wilcoxon statistical analysis
test between normal and abnormal cases for IA and IF. As shown
in Table 1, there is a shift towards higher frequencies in the IF
spectrum with increasing force level.

Table 2 tabulates the AM–FM correct classifications success rate
for the three classifiers KNN, SOM and SVM and for the five force
levels. In addition, the five force level scores per subject were com-
bined with majority voting and the results are also given in Table 2.
For the KNN classifier the values provided in Table 2 are for k = 11
which gave the best results and for the SOM for a 7 × 7 map matrix
and an evaluation neighborhood window 3 × 3 for the same rea-
son.

All models were trained with the 32 bin histograms of IA, IP,
and IF (i.e. 96 bins in total) as shown in Fig. 1, and the best classifier
was by far the SVM followed by the SOM and the KNN classifiers.
The SVM models trained with the 30% and 100% MVC signals gave
the highest percentage of correct classifications score (%CC = 75%,
Sensitivity = 65%, and Specificity = 85%). Combining the five force
level scores per subject with majority voting improved the average
success rate, reaching in the case of the SVM classifier 78%.

The last column of Table 2 tabulates the percentage of correct
classifications score of SVM models trained with the corresponding
AM–FM IA and IF histogram bins that demonstrated significant sta-
tistical difference (as given in Table 1). It is clearly shown that these
models gave better performance, with the models trained with the
30%, 10%, and 100% MVC  signals, achieving a %CC score of 78%, 75%,
and 75%, respectively. For the 30% MVC  model, that achieved the
highest %CC score, the Sensitivity was  70%, and the Specificity was
85%. Combining the five force level scores per subject with major-
ity voting improved the average success rate, reaching a score of
78%.

A close inspection of Tables 1 and 2 reveals that force levels
that had a larger number of features with significant differences
also gave better classification results. For example, at 70% force
level, we  had the lowest number of features with significant dif-
ferences and the lowest classification scores. On  the other hand, at
both 30% and 100% force levels, we  have five, the largest number
of significantly different results, and these are associated with the
M analysis for the classification of surface electromyographic signals,

best classification scores. Yet, the combination of all force levels
did not improve over what we obtained with just the significantly
different features associated with the 30% force level. Both gave
78%.

dx.doi.org/10.1016/j.bspc.2012.01.001
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Table 1
Statistical analysis based on the Wilcoxon test of the AM–FM IA and IF histogram bins between normal and abnormal cases. The histogram bins that demonstrated significant
difference at p < 0.05 are tabulated.

Force level (%) IA (mV) IF (Hz)

10 0.15–0.156, 0.169–0.175 78–109, 312–328
30 0.131–0.15, 0.156–0.187 62–78, 219–297, 312–344
50  0.031–0.044 219–297, 312–422
70  – 234–266, 312–359, 391–437, 469–484

100  0.031–0.05, 0.162–0.169, 0.193–0.2 234–250, 312–484

Table 2
Percentage of correct classifications score for KNN, SOM, and SVM models for classifying a subject as normal or abnormal (suffering from neuromuscular disease) based on
AM–FM  feature sets.

AM–FM feature set 32 bin histograms of: IA, IP, and IF Statistically significant
features of Table 1

Force level (%) KNN (%) SOM (%) SVM (%) SVM (%)

10 53 55 68 75
30  50 60 75 78
50  60 58 68 73
70 53 55 65 65
100  63 63 75 75
All  force levelsa 58 60 78 78

a The five force level scores per subject were combined with majority voting.
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Fig. 2. Boxplots of the instantaneous amplitude and the instantaneous frequency histograms for the normal and the abnormal classes at 100% of MVC. In each plot, we display
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f  the lower and upper quartiles. Crosses indicate outliers with values beyond the e

. Concluding remarks
Please cite this article in press as: C.I. Christodoulou, et al., Multi-scale AM–F
Biomed. Signal Process. Control (2012), doi:10.1016/j.bspc.2012.01.001

The American Association of Electrodiagnostic Medicine has
ublished in 1999 [14] a technology review paper mentioning that
here were no clinical indications for the use of surface EMG  in
ht lines connect the nearest observations within 1.5 of the IQR  (inter quartile range)
f the 1.5 × IQR.

the diagnosis and treatment of disorders of muscles and nerves,
M analysis for the classification of surface electromyographic signals,

however, it may  prove useful in the non-invasive monitoring of the
progression of these disorders. Although SEMG is not used rou-
tinely in the clinical neurophysiology lab for the diagnosis and
treatment of neuromuscular disorders, several studies investigated

dx.doi.org/10.1016/j.bspc.2012.01.001
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ifferent feature sets and classification models for differentiating
etween normal and abnormal SEMG recordings from subjects
uffering with neuromuscular disorders [2–7] (as documented in
he Introduction section). These models were trained with time,
requency, and multi-scale features, and their performance var-
ed with respect to the correct classifications score from 75 to
7.5%.

In this work it was shown that AM–FM analysis provides new
eature sets, which can be used successfully for the classification
f SEMG signals. The percentage of correct classifications score
chieved for the statistically significant IA and IF features for the
0%, 30%, 50%, 70%, and 100% of MVC  were 75%, 78%, 73%, 65%, and
5%, respectively. These results can easily be compared to a recent
tudy by Istenič  et al. [7] that investigated multiscale entropy on the
ame SEMG dataset where it was found that the percentage of cor-
ect classifications score achieved for 10%, 30%, 50%, 70%, and 100%
f MVC  was 65%, 65%, 78%, 74%, and 78% respectively. Moreover,
hen combining all the statistically significant IA and IF features

or all force levels, the %CC was 78% versus 81.5%, 77.8%, 74.1%, and
4.1% achieved for the entropy based classification using the Haar,
orlet, Daubechies order (8), and Mexican hat mother wavelets

7], respectively. Thus, it has been clearly demonstrated that using
nly the AM–FM multiscale IA and IF statistically significant fea-
ures and SVM modeling, the highest %CC of 78% can be used for
ifferentiating normal vs abnormal cases. Moreover, it should be
entioned that time and frequency domain features investigated

n the same SEMG dataset gave significantly lower %CC score [9].
urthermore, it should be noted that the performance of the classifi-
ation models documented should be analysed, and/or interpreted
aving in mind that the abnormal SEMG recordings investigated
ome from a very heterogeneous group of subjects suffering with
euromuscular disease.
Please cite this article in press as: C.I. Christodoulou, et al., Multi-scale AM–F
Biomed. Signal Process. Control (2012), doi:10.1016/j.bspc.2012.01.001

The use of multi-scale AM–FM analysis has to be investigated
n more subjects suffering with neuromuscular disorders, as well
s to be investigated on longitudinal studies for monitoring the
rogression of disease.
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