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Abstract—This paper presents new methods for phase and mag-
nitude interpolation and demonstrates their usefulness in recon-
structing images from a limited number of frequency samples.
A collection of multiscale frequency domain sampling geometries
are developed based on the partition of the spectrum into low-,
medium-, and high-frequency blocks. A nonstationary statistical
approach is introduced that is based on adaptively selecting the
best stochastic model in each frequency block. To develop effective
models, the magnitude spectrum is preprocessed using a logarith-
mic transformation. Phase interpolation requires preprocessing by
an appropriate phase unwrapping method. The new stochastic
interpolation method is compared against cubic spline, bilinear,
and nearest neighbor interpolation methods. Image reconstruction
results are presented for sampling rates that retain 6.01% to
28.91% of the 2-D fast Fourier transform (FFT) samples. Image
interpolation methods are compared based on the peak signal-
to-noise ratio and the mean structural similarity index for satellite
images of rural, natural, and urban images. The results indicate
that the stochastic (Kriging) interpolation approach provides the
best rural image reconstructions using just 6.01% of the 2-D FFT
samples. Bilinear interpolation also gave excellent reconstructions
for natural and urban images. For natural and urban images,
stochastic interpolation gave the best magnitude-only interpola-
tion results.

Index Terms—Magnitude spectrum interpolation, phase spec-
trum interpolation.

I. INTRODUCTION

WIDE variety of remote sensing applications can
benefit from effective frequency-domain interpolation
methods. Potential applications range from image formation,
super-resolution, and image compression. Just as important,
while particularly challenging, is the development of new meth-
ods for phase spectrum interpolation (see [1] for the importance
of phase for general signals). In remote sensing applications,
the phase represents a physical measurement such as surface
topography in interferometry [2]-[9]. Given the significant
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differences between phase and magnitude spectra, we will
consider them separately.

The study of frequency-domain image representations can
be motivated from the basic image formation processes. As an
example, in computed tomography (CT), imaging consists of
sampling the spectrum along a collection of radial lines [10].
Image reconstruction requires interpolation from the radial line
samples on a regular Cartesian frequency grid. CT images
are then reconstructed using a regular 2-D (or 3-D) inverse-
fast Fourier transform (FFT). A CT imaging formulation of
spotlight-mode synthetic aperture radar can be found in [11].
Super-resolution methods can also be thought of as methods for
recovering high-frequency information from lower frequency
images [12]. A more general example is to simply consider im-
age reconstructions from limited numbers of frequency-domain
samples. In all of these applications, effective methods for fre-
quency domain interpolation can lead to better reconstructions.

In CT, the standard frequency-domain interpolation methods
are based on nearest neighbor and bilinear interpolation (page
59 in [10]). More generally, splines are recommended as “a
perfect fit for signal and image processing” in [13], with spline
interpolation as one of the best-known applications.

In what follows, we will consider the phase and magnitude
spectrum interpolation separately. Here, note that the phase
spectrum is well-known to be of fundamental importance for
reconstructing both signals and images [1]. As shown in [1],
under suitable conditions, objects of finite extent can be fully
reconstructed from their phase-spectrum samples.

In this paper, our focus will be on the reconstruction of
remote sensing imagery from magnitude and phase spectrum
samples. The methods are developed and tested on ten repre-
sentative and openly available satellite images of urban, rural,
and natural scenery (see examples in Fig. 1). For testing our
results, we have used three rural images, five urban images, and
two natural images [14]-[17]. The urban images are selected
subregions of a single, large ASTER SpectroRadiometer image
of London, England.

Our primary focus is on the development of effective interpo-
lation methods that can be used to reconstruct the original input
images from a limited number of frequency domain samples.
The basic approach can be summarized in three steps. First,
the phase and magnitude spectral samples are generated using a
2-D FFT. Second, phase and magnitude interpolation is used to
reconstruct the 2-D FFT spectrum from a limited subset of the
original samples. Third, an approximation to the original image
is obtained using an inverse 2-D FFT.
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Fig. 1. Three of the ten images used in this study, sampled from the three image class types. (a) Purdue University Agronomy Research Center,! size 1069 x 1374
(rural example). (b) Sub scene from ASTER SpectroRadiometer image of London, England,? size 401 x 501 (urban example). (c) The Grand Canyon and sur-
rounding country,3 size 351 x 501 (natural image example). The displayed images in (b) and (c) are subimages of all the images that are available at the web links.
http://www.lars.purdue.edu/home/image_data/spectral_vision_data.html, Name: sv010813_ARC_F106_1m; http://asterweb.jpl.nasa.gov/gallery/images/london-

final.jpg; http://photojournal.jpl.nasa.gov/catalog/PIA03402.

There are significant challenges associated with the sampling
and interpolation processes. In summary, the primary ideas (and
contributions) of this paper are as follows.

* Multiscale frequency-domain sampling geometries: A col-
lection of sampling geometries is introduced that provides
for dense sampling near the lower frequencies, followed
by sparser sampling in the medium frequencies, and very
sparse sampling in the higher frequencies. The motivation
for the approach comes from the fact that the majority
of image energy is concentrated in the lower frequency
bands, with significantly less energy in the higher fre-
quency bands. We use the term multiscale to describe the
approach (see [18] for a similar frequency-domain par-
tition). We consider independent sampling geometries for
the phase and magnitude spectra, with denser sampling geo-
metries reserved for the phase spectrum (motivated
by [1]).

* Nonstationary adaptive stochastic spectral modeling: We
introduce an adaptive approach that selects the best
stochastic model based on the best fit from a collection of
stochastic models. The approach is based on an extension
of spatial statistical models and methods to the spectral
domain [19]. Furthermore, the method does not assume
stationarity over the entire spectral domain. Instead, sta-
tionarity is only assumed over selected partitions of the
frequency spectrum.

e Phase spectrum interpolation based on phase
unwrapping: Phase interpolation is very challenging due
to significant phase-wrapping artifacts. This necessitates
the use of phase unwrapping prior to stochastic modeling
and interpolation. A collection of phase unwrapping
algorithms are evaluated to select the best approach.

* Magnitude spectrum interpolation based on logarith-
mic transformation: Magnitude interpolation is com-
plicated by the significant decay as a function of
frequency magnitude. To address this issue, stochas-
tic modeling requires the use of a logarithmic trans-
formation prior to interpolation. As we describe in

2) interpolate, and 3) apply the exp(.) function to recon-
struct the magnitude spectrum.

Quantitative comparisons of stochastic and determinis-
tic approaches based on the mean structural similarity
index: To evaluate the effectiveness of the approach we
provide quantitative reconstruction results based on the
peak signal-to-noise ratio (PSNR) and the mean structural
similarity (SSIM) index [20]. Here, we note that the use
of the PSNR has been shown to correlate very poorly to
human perception [21]. The mean SSIM provides for an
objective assessment of the quality of the reconstructed
images. SSIM is defined over local image windows at
every pixel using

SSIMy (i, 7) = Lr,5(i,5) - Cr,4(4,7) - S1,5(3,7)

where L; ; is a measure of local luminance similarity,
C', 7 is a measure of local contrast similarity, and St j is a
measure of local structure similarity. They are given by

con 20008 5) - pa (i) + Ch
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where (1, ;o7 denote the weighted averages, oy, oy denote
the weighted standard deviations, o, ; denotes the cross-
standard deviation, and C7,C5, (5 are stabilizing con-
stants. The mean SSIM is the average SSIM over the entire
image region. The PSNR and mean SSIM measurements
are used to compare the proposed stochastic approach
with the nearest neighbor, bilinear, and cubic interpolation
methods. Separate comparisons are provided for rural,
natural, and urban images.

Section II, this transformation also allows us to provide
effective stationary model approximations to nonstation-
ary random fields. The basic three-step process is sim-
ply to 1) apply the log(.) to the magnitude spectrum,

The proposed stochastic method for phase and magnitude
spectrum interpolation is termed Kriging by Matheron [22].
According to [22], Kriging was independently developed by
Matheron and Gandin. In what follows, we provide a brief
summary of Kriging applications in remote sensing.
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Cheng et al. used Kriging to interpolate terrain eleva-
tion information to rectify SPOT satellite images in [23].
Kanaroglou et al. [24] used Kriging to estimate the missing
pollution map levels when ground cover and clouds obstruct
measurement. Rossi ef al. [25] used Indicator Kriging to inter-
polate unknown image regions of Landsat Thermatic Mapper
images. Ferretti et al. utilized Kriging to filter and resample the
atmospheric permanent scatterers that influence the accuracy of
synthetic aperture radar (SAR) interferometry [26]. Blaschke
utilized Kriging for object classification in remotely sensed
images to assist in appending a geographic information system
database to the image data [27]. Djamdji and Bijaoui [28]
utilized Kriging to map the disparities over two stereo images.
The disparity map was then used to register the two images
that constitute the pair. Carr demonstrated that Kriging can be
modeled in a way to achieve less smoothing in Kriging by
performing a two-step Kriging process, where the outputs are
combined in a way that is analogous to summing high- and low-
pass filtered images [29].

More recently, Atkinson et al. used cokriging based on
coregistered images of different spatial and spectral resolutions
to provide reconstructions at increased spatial resolution (super-
resolution) [30]. Foster and Evans [31] reported on the use of
Kriging and other methods for reconstructing ionospheric total
electron count maps. In [32], the authors showed that Kriging
methods are very effective in providing regional objective anal-
ysis for merging several data sets.

In our approach, we consider the application of Kriging
methods for reconstructing the full Fourier spectrum from a
dyadic, multiscale sampling of the frequency domain. The
motivation for choosing this frequency grid comes from the
desire to produce effective image reconstructions at relatively
low sampling densities. In other words, our motivation comes
from developing an effective approach for representing and
encoding remote sensing imagery. By keeping the sampling
density low, we have an effective image compression approach.
Here, we note that effective methods for remote sensing image
compression are of current interest (see [33]-[36]).

As in our paper, the authors in [33]-[35] were interested in
developing fast methods for coding remote sensing images. The
authors in [33] presented a low-complexity method for lossless
compression of hyperspectral images by using joint decoding
of correlated bands of hyperspectral images. Similarly, in [34],
the authors presented a modification of the Karhunen-Love
transform (KLT) to allow for a fast method for coding remote-
sensing images. In [35], the authors propose a pairwise orthog-
onal transform for spectral image coding that is recommended
as a spectral decorrelator that is more efficient than wavelets
without having the high computational complexity associated
with the KLT.

Our basic idea of reconstructing images from a limited num-
ber of frequency-domain samples is also related to compressive
sensing approaches. Here, we note that the authors of [36]
proposed the use of compressive sensing techniques for space-
time tomographic SAR inversion. This approach provided a
method of spatial-time interpolation that is motivated from the
fact that tomographic elevation resolution is sampled at “at least
one order of magnitude lower than in range and azimuth” [36].
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Our approach of minimizing the required number of FFT
coefficients has both direct and indirect applications in remote
sensing. Directly, our approach allows us to effectively com-
press the image. Here, a fraction of the FFT coefficients need to
be transmitted. The images can then be reconstructed from lim-
ited frequency-domain samples. An indirect application comes
from the fact that we can achieve significant computational
savings based on the fact that frequency-domain interpolation
from the acquisition geometry to the FFT sampling geometry
(for image formation) only needs to reconstruct a small fraction
of the full-scale FFT-grid samples. Another indirect application
comes from the possible redesign of the (frequency-domain)
image acquisition geometry to only produce samples that are
close to the reduced number of FFT samples required by the
multiscale geometry. Here, note that the standard method for
addressing the relationship between the imaging acquisition
geometry is to provide some guarantee of the resulting image
resolution (e.g., see [37]). In our approach here, starting from
an image reconstructed at a given resolution, we show how to
reduce the number of frequency-domain samples to achieve
image reconstruction of sufficient image quality. When the
image acquisition is in the frequency domain, as in SAR,
this information can be used to select an acquisition geometry
with frequency sampling densities that are at least as dense
as the geometries discussed here. While we do not pursue
this application in this paper, this indirect application of our
research appears to be relatively straightforward.

Given our target image encoding application, it is also inter-
esting to ask why we did not consider spatial-domain Kriging as
an alternative. To address this, note that spatial-domain methods
do not have the indirect effect of controlling the sampling
density of FFT frequencies that need to be interpolated. Fur-
thermore, as we shall see in the results section, a very fast and
effective frequency-domain method based on Ordinary Kriging
(OK) can be used to provide effective interpolation in the fre-
quency domain. On the other hand, while the stochastic models
may be simpler, our approach does require phase unwrapping.

We also note that the use of a predefined sampling geometry
allows us to investigate image compression methods that do
not require the overhead associated with having to encode the
spectral location of the FFT coefficients. Thus, our approach
also avoids having to store the coefficient number as required
by popular methods such as basis pursuit [38]. The rest of the
paper is organized as follows. A theoretical background of the
spectral statistical models is given in Section II. This is followed
by a detailed description of the methodology in Section III.
The results are provided in Section IV, followed by concluding
remarks in Section V.

II. THEORETICAL BACKGROUND
A. Spectral Statistical Models

Digital images are characterized by a discrete spectrum that
is periodic, with a fundamental 2-D frequency support from —7
to 7 in each dimension. The 2-D FFT of an image produces
a discrete lattice of regularly spaced frequency samples over
the continuous interval of [—m,7]2. Here, we would like to
investigate the use of methods from spatial statistics that allow
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us to interpolate the 2-D FFT frequencies from a limited subset
of these samples.

To fix the notation, we let the discrete frequency spectrum
samples be at digital frequencies s; = (u;, v;) where ¢ is used
for indexing the different samples. In this notation, the hori-
zontal frequency coordinate is denoted by u;, while v; refers to
the vertical frequency coordinate. Let Z(s;) denote the phase
or magnitude values sampled at location s;. The second-order
stationary variogram is [19]

279(s1 —s2) = var (Z(s1) — Z(s2)) (1)

where ~(.) denotes the semivariogram (half of the variogram).

Assuming an intrinsically stationary random field, the
method of moments estimator, commonly referred to as the
classical variogram estimator, is given by

R 1
B0 = 1wy 2

(4,7)eN (h)

(Z(si) — Z(s5))° 2)

where N (h) is defined by N(h) = {(¢,j) : s; —s; = h} and
| N (h)|is the number of elements in the set N (h). The classical
estimator is unbiased but not robust. Here, we use the term
robust with reference to contamination by outliers [19]. In
other words, the presence of outliers can cause (2) to produce
incorrect estimates.

Due to the periodic nature of the 2-D FFT domain, intrinsic
stationarity cannot be assumed over the entire spectrum. In
order to have confidence in our variogram estimates, we seek
a partitioned spectral domain that lends itself to independent
spectral statistical modeling within the regions defined by the
partition. We intentionally select a dyadic partition, which
allows us to explore our spectral models using a scalable
framework. The dyadic partitioning results in outer regions that
are four times as large as the next smaller regions (see Fig. 2).
These high-frequency regions contain less spectral energy.
Compared to the low-frequency bands, the higher frequency
bands are sampled at a lower sampling density. Conversely, the
innermost contain the low-frequency information of the image,
and we want to preserve the original spectral content therein.
Fig. 2 shows the half-spectrum partitions and numbers them for
reference throughout this work.

For each spectral region, we first consider isotropic models to
fit each magnitude and phase spectra empirical variograms with
one of the following three theoretical semivariogram models
[19].

» The Spherical Model:

0, h=0,

Y(b)={ o+a{3(Inl/8)~((nl/8)*} . 0<n|<p
a+o, Il > 23,

0c>0, «a>0, and [>0. 5)

* The Exponential Model:

0, h =0,
v(h) = {a+a{1 —exp (—|h[l/B)}, h#0,

>0, >0, and B >0. (6)
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Fig. 2. Spectral partition map. The (zero-centered) discrete frequency domain
is partitioned into high-frequency blocks (blocks 1-6), medium-frequency
blocks (7-12), and low-frequency blocks (13, 14). The low-frequency blocks
were sampled at the regular discrete Fourier transform (DFT) sampling rate. In
this example, the DFT sampling grid is 301 x 401, which is the same as the
size of the original input image. The high-frequency blocks contain 75 x 112
samples while the low and medium-frequency blocks (7-15) contain 37 x 56
samples. Since we are dealing with real-valued images, the frequency spectrum
is conjugate symmetric. Thus, we only need to work with two quadrants of the
discrete frequency space. The other two quadrants are inferred by symmetry
(see more details in Section III, the Methods section).

¢ The Gaussian Model:

0, h =0,
1) = {74 a1 — exp— (/5 Il 0

0>0, a>0, and B>0. )

In the above models, o is the nugget effect, which was
termed by Matheron as a representation of small scale
variations (in our case, subspectral sample variations) that
manifest themselves as a discontinuity at the minimum
measureable range value. The parameter « is referred to as the
variogram sill, and it is defined as the limit of the variogram
as the distance between samples approaches infinity. Typically,
a good initial estimate for the variogram sill is the sample
variance. Finally, (3 is referred to as the variogram range and
can be thought of as the lag at which Z(s) and Z(s + h) are
no longer correlated. It can be used a guide to determining the
lag distances required to include in spatial prediction.

General anisotropic models that can capture spatial corre-
lations at all possible directions are impractical since they
require estimation of 1-D variograms along a large number
of directions. We would then need to select samples along
each possible direction and range. For practical purposes, a
simplified directional model is considered (e.g., see [39]). In
the simplified model, anisotropic semivariograms are assumed
to follow an ellipsolidal shape. Then, the application of the
simplified model requires the determination of the principal
variogram direction and the anisotropic ratio. Here, the prin-
cipal direction and anisotropic ratio are defined in terms of
the distance of maximum spatial correlation. Furthermore, the
direction of minimum correlation is assumed to be orthogonal
to the principal direction. To address the sampling issue, a
tolerance parameter is used in order to provide the maximum
allowed angle deviation. Unfortunately, in our case, the number
of samples is also limited by the dyadic partitioning. Here,
note that there are far fewer low-frequency samples than higher
frequency available for model estimation. For determining
anisotropic behavior, we consider Kriging directions every 15°.
We provide an example in the results section.

Isotropic models turn to be robust due to the limited number
of parameters that need to be estimated. In this case, only three
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parameters are required. As such, they can be fitted to spectral
regions with relatively small numbers of samples. On the other
hand, the use of a simplified anisotropic model requires addi-
tional optimization to determine the principal direction over all
possible cases.

B. Magnitude Spectrum Transformation for Stationary
Random Field Approximation Over Fixed Regions

The magnitude spectrum can decay significantly as function
of the discrete frequency magnitude. Here, the application of
the stochastic models requires that we can provide a station-
ary random field approximation within each spectral region.
However, within each spectral region, the fact that the mag-
nitude spectrum can vary significantly leads us to consider a
logarithmic transformation and trend removal. On the other
hand, in general, we note that the application of the logarithmic
transformation cannot be assumed to transform a nonstationary
random process into a stationary one. We provide more formal
details of our approach in this section.

When a given spectral-domain region violates the stationarity
assumptions, it may be reasonable to expect that we can provide
good, stationary approximations over a disjoint partition of
subregions of the original region [19, p. 64]. Furthermore,
instead of requiring stationarity over the original region, it is
reasonable to assume that the relative variogram, defined by

277 () /2 ®)

where 11; denotes the jth subregion average, will remain ap-
proximately constant over all sub regions, independent of j. It
can be shown that the application of the logarithmic transfor-
mation will produce an approximately intrinsically stationary
random field over the original region [19]. The importance
of this result is that the logarithmic transformation allows us
to apply our methods over each spectral region of Fig. 2,
without requiring any knowledge of the specific boundaries of
the constituent subregions.

C. Phase Unwrapping

Phase interpolation presents significant challenges due to
the fact that the estimated phase is wrapped into the interval
(=, w]. Sharp discontinuities in the wrapped phase make it
particularly challenging for interpolation. On the other hand,
phase unwrapping can generate large phase values which can
magnify interpolation errors. To see this, note that a small phase
reconstruction error for large values can map to a relatively
large error in the wrapped interval of (—m, x|, and it is this
wrapped interval that is relevant for reconstruction purposes.

We explored the use of five different 2-D phase unwrapping
techniques that are described and implemented in software
[40]. Three of the algorithms we applied to the phase spectra
are path following techniques: Goldstein’s Branch Cut method
[3], quality guided path following [41], and Flynn’s minimum
discontinuity method [42]. The other two methods can be
described as minimum norm methods, which approach phase
unwrapping in a mathematically formal manner. These are the
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preconditioned conjugate gradient (PCG) algorithm and the
weighted multigrid algorithm (see [40]).

The minimum norm methods produce the smoothest surfaces
but result in a very large range of unwrapped values. As
mentioned earlier, large phase values are undesirable because
the quality of the reconstructed phase depends on the relative
error within the range of (—, 7], regardless of the unwrapping
method. Larger unwrapped phase values resulted in significant
relative error within the range of (—m, ] of the interpolated
phase values. Unwrapped phase surfaces with the smallest
range of values obtained by Flynn’s minimum discontinuity
method gave the best results.

D. Optimal Interpolation Using Kriging

Assuming that each spectral location can be modeled by the
constant mean and zero-mean intrinsically stationary random
process 40(s), we write Z(s) = u+ 0(s). OK estimates the
optimal linear predictor using a weighted sum of the known
data points within a region, B using [19]

p(Z;B) = > NiZ(s:). ©)
=1

We also require that the optimal data points should satisfy

i=1

which guarantees uniform unbiasedness.

Numerical optimization techniques are used to minimize
the prediction error with respect to the selected model values
(M, A2,...,A\,) and the resulting Lagrange multiplier that
ensures the constraint holds resulting in a system of linear
equations. The computational complexity of the Kriging in-
terpolation step is dependent on the size of the linear system.
In matrix form, the solution’s computational complexity is
governed by a matrix inversion of size (N + 1) x (N + 1),
where NV is the number of interpolated samples being sought.

For modeling possible trends in the data, we also consider
Universal Kriging model of the form [19]

(10)

p+1

P(Z;B) = B 1fj-1(s) +d(s) (11)

where f;_1(s;) is the jth function of position (j =
1,2,...,p+ 1), B is an unknown vector of p 4+ 1 parameters,
and §(s) denotes a zero-mean intrinsically stationary random
process. Here, note that the use of Universal model requires
a choice of suitable trends functions and the estimation of the
function coefficients (3).

III. METHODS
A. System Block Diagram

The overall system is summarized in Figs. 3 and 4. Fig. 3
summarizes the “encoding steps.” In other words, it provides
the phase and magnitude samples and the statistical model
parameters that are needed for representing the input image.
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Obtain Frequency Samples from Image
Acquisition Geometry or using 2D FFT

Partition 2D Spectrum into low, medium,
and high frequency blocks

|

Apply log-transformation to Magnitude
Spectrum and phase-unwrapping to phase
spectrum

Estimate optimal statistical model for each
frequency block of the transformed
magnitude and phase

For a target compression-rate,
select Frequency sampling geometry
and apply it to select the phase and
magnitude samples

Fig. 3. Spectral sampling for remote sensing image compression. This repre-
sents the encoder part of the method. It produces the samples and the statistical
model parameters that are needed for reconstruction. Refer to Table I for the
target compression rates that can be achieved with the proposed approach.

Use statistical model parameters to reconstruct each frequency block
from its samples (Kriging step)

A 4
Combine the frequency blocks to reconstruct the 2D FFT spectrum

A

Apply the exponential transformation to the magnitude spectrum

v
Apply the inverse FFT to reconstruct the input image.

Fig. 4. Fourier and spatial image reconstruction flow chart. This represents
the decoder part of the method. It represents the spatial image reconstruction
procedure using only the statistical model parameters and the retained image
and phase samples.

The “decoding steps” are given in Fig. 4. Fig. 4 provides
the steps for reconstructing the input image from the retained
spectral samples.

The encoding approach starts with selecting the target com-
pression ratio based on the fraction of frequency-samples that
will be retained. Given a target compression ratio from 6.01%
to 28.91%, Table I can be used to select the best sampling
geometry.

In the encoding phase, the phase and magnitude samples
are obtained using a 2-D FFT. The frequency samples are
partitioned into low, medium, and high-frequency blocks as
given in Fig. 2. Prior to interpolation, the logarithmic transfor-
mation is applied to the magnitude spectrum. As discussed in
Section II-D, phase unwrapping is performed using Flynn’s
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minimum discontinuity method. The best statistical models
are selected for each frequency block. The collection of the
retained samples and the statistical models can be used for
reconstruction as shown in Fig. 4.

In Fig. 4, the first step is to interpolate the phase and magni-
tude samples over each frequency block. The frequency block
reconstructions are put together to reconstruct the 2-D FFT
samples. The exp(.) transformation is applied to the magnitude
spectrum to invert the log(.) step. The inverse 2-D FFT is then
used to reconstruct the input image.

Here, note that for real images, only two quadrant samples
are needed. The other two quadrants are obtained by conjugate
symmetry. We will next provide more details on the sampling
geometries, the interpolation process, the statistical model fit-
ting, and the interpolation process.

B. Spectral Sampling Geometries

The scalable, adaptive spectral lattice sampling approach
we propose allows for the use of the region-based spatial
statistical models described above. First, utilizing the symmetry
provide by the Fourier transform of real-valued data, F'(u,v) =
F*(—u, —v), where F* is the complex conjugate operation, the
magnitude spectra and phase spectra symmetry are expressed
as |F(u,v)| = F|(—u,—v)| and LF (u,v) = —LF(—u,—v),
respectively. This allows us to represent an N x N image by
(N/2+ 1) % N spectral samples. For implementing the phase
unwrapping methods, we first reconstructed the phase over the
entire frequency spectrum. Then, we take the real part of the
reconstructed image.

We applied different uniformly spaced sampling rates for the
large and small (outer and inner) dyadic partitions in a manner
that reduced the number of frequency samples as a function of
the relative frequency magnitude. In other words, the samples
near the low-frequency components were not downsampled, as
the majority of the image energy is concentrated there. Given
that image energy drops with the increasing frequency magni-
tude, we considered sampling rate reductions for the outer and
inner (non-dc) spectral partitions that are twice as dense for the
blocks closer to the center of the spectrum. This allows analysis
of sampling rate reductions for the outer and inner spectral
partitions that provide acceptable image reconstructions. Ta-
ble I summarizes the overall spectral sampling rate we achieve
when uniformly sampling the magnitude and phase spectral
regions at various rates. It is also important to note that we have
independent sampling rates for frequency and phase samples. In
all cases, the sampling geometries of the magnitude spectrum
are a proper subset of the sampling geometries of the phase
spectrum. This means that we have far less magnitude spectrum
samples than phase spectrum samples. Furthermore, for each
phase spectrum sample, we have the corresponding magnitude
spectrum sample. This is due to the fact that phase interpolation
is far more challenging than magnitude spectrum interpolation.

C. Variogram Model Selection and Fitting

First, we need to estimate three variables when selecting
the appropriate model for the empirical variograms calcu-
lated within each frequency block. The second consideration
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TABLE 1
SPECTRAL STATISTICAL DATA SAMPLE RATES

MAGNITUDE SAMPLING
PHASE RATE 1:4/1:16 1:16/1:64 1:64/1:256
SAMPLING
RATE
NONE: 1:1/1:1 S1:28.91% S2:27.15% S3:26.71%
1:1/1:4 S4:25.78% S5:24.02% S6:23.58%
1:4/1:16 S7:11.72% S8:9.96% S9:9.52%
1:16/1:64 S10: 8.20% S11:6.45% S12:6.01%

required when calculating variogram models is the extent of
the range that will be used in the variogram estimation. The
additional computational cost of variogram calculation over the
entire frequency block was chosen as part of the variogram
estimation process. This ensures that our method is scalable;
allowing multiple sampling rates within a single frequency par-
tition to be explored based a single estimate of the variogram.
In other words, we ensure that the estimated model provides a
semivariance for the minimum sampling rate.

A third consideration that is explored is the number of semi-
variance values to fit and which model best fits the empirical
data. We appeal to numerical optimization to determine which
model via nonlinear least squares curve fitting. The sampling
rate applied to each spectral partition will be used to govern the
size of the maximum lag we wish to fit the model to.

The consideration of anisotropic models requires the estima-
tion of the dominant direction and the anisotropy ratio. Here,
note that if the anisotropic model gives a ratio that is in the
range of 0.7-1.0, we reject the anisotropic model in favor of
an isotropic model. This avoids possible overfitting of isotropic
data with an anisotropic model. Also, if the anisotropic model
fits fail, we default to an isotropic model that tends to be more
robust.

D. Kriging Interpolation of Magnitude and Phase Spectra

Both Ordinary and Universal Kriging are considered with
the log-magnitude and unwrapped phase data. Two parameters
were explored in finding the optimal Kriging result: the max-
distance and the max-samples values. The former refers to
the circular radius of the maximum discrete-frequency space
distance that needs to be considered for estimating the missing
value, while the latter refers to the exact maximum number of
known FFT samples that need to be considered for providing
the optimal estimate. We chose to limit our exploration to the
max-samples parameter, as it is not prone to geometric con-
straints along the edges of the frequency blocks and provides
consistent reconstruction models. Here, we note that the two are
closely related. Based on the sampling geometry, we can derive
the max-samples parameter from the max-distance parameter.
Furthermore, it is clear that the max-distance parameter is
closely related to the correlation length.

Using the max-samples value that provides the best re-
construction (in terms of PSNR), we reconstructed both the

magnitude and the unwrapped phase (using Flynn’s minimum
discontinuity method) from variogram estimates calculated
over all samples within a given spectral block. We compared
both the reconstructed magnitude and phase samples from the
Kriging method here to the established methods for 2-D in-
terpolation: nearest-neighbor, bilinear, and spline interpolation.
A comparison of the image produced by the inverse Fourier
transform of all reconstructed spectral samples is also included,
where the PSNR and SSIM matrix [20] are used to quantify the
reconstructed spatial images.

IV. RESULTS

We summarize the results in four sections. First, we present
results from nonstationarity tests on the magnitude. Second,
we present results from the use of different variogram models.
Then, we discuss interpolation results (Kriging), followed by
comparisons of image reconstructions obtained by different
methods.

A. Log-Magnitude Stationarity Assumption

A basic assumption of our model is that the use of the
log(.) operation results in a stationary model for the magnitude
spectrum. Exploratory analysis of several spectral blocks did
not show any significant trends or deviations from stationar-
ity. The important exception to this observation comes from
highly directional structures (e.g., images of roads). In such
cases, small portions of the magnitude spectrum showed strong
directional information. Thankfully, because a small portion of
the spectrum is affected, our methods still performed well.

Following nonstationary analysis tests suggested by Cressie
[19], we present a typical example in Fig. 5. The log-magnitude
medium-frequency block is shown in Fig. 5(a). After removing
linear trends, boxplots of the rows are shown in Fig. 5(b). An
examination of the boxplots of Fig. 5(a) shows that they tend
to follow a relatively stable pattern. A similar result is evident
in the boxplots of the columns shown in Fig. 5(c). A more
sophisticated test of nonstationarity is presented in the “pocket
plot” of Fig. 5(d) [19]. In Fig. 5(d), along the north-south lags,
we present boxplots for each row. Nonstationary behavior for
a particular row is characterized by boxplots that are centered
away from zero. In the plot, rows 13 and 28 show nonstationary
behavior. The rest of the rows appear relatively close to zero.
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each row for identifying nonstationary pockets in the data.

Thus, for the majority of the rows, it appears that the stationarity

assumption holds.

B. Comparison of Variogram Models

In exploratory analysis for possible trends in the data, it was
determined that a linear model would suffice. This decision is
further supported by results that indicated that deterministic
methods based on linear interpolation gave very competitive
results (e.g., see Table III and later discussion in this section).
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Medium-frequency, log-magnitude block for testing stationarity. (a) Original image. (b) Row boxplots. (c) Column boxplots. (d) Pocket boxplot along

In Fig. 6, we present we present a comparison of various var-

iogram models on a medium-frequency and a high-frequency
block. Here, we are looking at an example of interpolating
the unwrapped phase image of Fig. 6(a). Optimal, isotropic
variogram models based on OK are presented in Fig. 6(b) and

variogram fits are bounded by a deterministic sill.

(c). In these examples, we note that the “unboundedness” in the
ordinary variogram model indicates possible trends in the data.
The use of Universal Kriging with linear trends shows much
better fits in Fig. 6(d) and (e). In particular, it is clear that the
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Fig. 6. Comparison of various variogram models for two specified spectral blocks of a given unwrapped phase of an image of the urban class. (a) The entire
unwrapped phase and indicated blocks from which the models were derived. (b) The Ordinary Kriging empirical variogram and fitted model for Block 4. (c) The
Ordinary Kriging empirical variogram and fitted model for Block 7. (d) The Universal Kriging (assuming a linear trend) empirical variogram and fitted model for
Block 4. (e) The Universal Kriging empirical variogram and fitted model for Block 7. (f) The directional variograms for Block 4, indicating that no directional
component has a significant correlation and an Isotropic Model is supported in this case.

While Universal Kriging appears to be much better suited for
phase interpolation, it did significantly worse than OK on mag-
nitude interpolation. Phase interpolation is limited by the need
for phase unwrapping and the nonstationary characteristics of
the phase. Also, we found that Universal Kriging could lead to
overfitting the magnitude data. This observation is significant
because most of the compression gains come from interpolating

the high-frequency magnitude blocks. As we discuss later in
this section, this resulted in OK performing well when compar-
ing image reconstruction quality to that of Universal Kriging.
The use of anisotropic models proved to be somewhat less
effective. Some of the issues are demonstrated in Fig. 6(f). In
the example of Fig. 6(f), note that there is no clear dominant di-
rection. Furthermore, at larger distances, the estimates tended to
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TABLE II
HIGH-FREQUENCY BLOCK RECONSTRUCTION PSNR, MAGNITUDE. SAMPLING RATES
ARE EQUAL ALONG THE HORIZONTAL AND VERTICAL DIRECTIONS

Statistic Min i Median il Max
Sample Quartile Quartile
Rate
v 1:162 44.9250 50.2470 52.1638 53.3509 55.0397
o
i En 1:8? 46.7038 51.6753 53.7825 54.7097 56.7870
St
=i 1:42 46.7038 53.4854 55.1832 55.7543 57.7496
1:162 43.5644 47.8149 50.0642 51.1259 53.3444
]
% 1:82 45.8346 48.8110 50.8671 51.2437 52.9376
)
1:42 45.8207 50.0140 50.3334 51.6328 53.4519
1:162 41.7850 45.9392 48.2797 49.5575 51.3172
2
D
:53' 1:82 43.7956 46.6477 48.2320 49.4008 51.0215
V4
1:4% 43.8480 47.8078 48.8800 49.5472 51.3849
1:162 45.7441 49.1677 51.5058 52.3860 53.7980
St
g 1:8% 46.7093 502485 | 514099 |  52.5443 | 542441
£
1:4? 47.2029 51.2519 52.2092 52.9615 54.7953

be noisier since there are fewer samples used in the estimation.
On the other hand, the presence of strong, directional spatial
components did lead to better fits by anisotropic models. Here,
we use the term “strong” to refer to long spatial extends. For
example, a long road will lead to the need for anisotropic mod-
els. Overall, though, as we shall describe later, the significant
computational complexity associated with fitting anisotropic
models may not be justified by marginal improvements in the
results.

C. Magnitude and Phase Kriging

Based on the sampling rates that were considered and the
range of the empirical variogram models, we considered fitting
the variogram from two to the number of samples that ensure
complete inclusion of all data points within a given spectral
block. The combination of these parameters led us to perform
a search for the optimal estimation parameters for Kriging
reconstruction on both the magnitude and unwrapped phase
data, respectively.

Table II contains nonparametric summary statistics of the
high-frequency block magnitude reconstruction PSNR values
over all ten images. The statistics we have chosen are the
minimum, first quartile, median, third quartile, and maximum
PSNR values of all reconstructions at the three high-frequency
sample reduction rates and the three medium-frequency sample
reduction rates. For comparison, the same statistics for the cubic
spline, nearest neighbor, and linear interpolation algorithms are
also included. The above results were obtained by fitting the
minimum number of semivariance values up to either a radius
of 25 for sample rates greater than 8; or the radial distance
equal to three times the sampling rate for sample rates less than

8. The Ordinary, isotropic Kriging steps were performed using
the derived max-samples from a max-distance parameter value
of 25 for the high-frequency blocks and 20 for the medium-
frequency blocks. Experiments on both the high and medium-
frequency blocks revealed that these are the optimal parameter
values. Going beyond 25 neighbors does not gain significant
improvement in reconstructions. The additional computational
cost is not worth an unperceivable gain in reconstruction
quality.

Relative PSNR improvements obtained by using Kriging
over the other interpolators for the medium-frequency blocks
of the magnitude of the Fourier samples were very similar to
the results of the high-frequency blocks. Not surprisingly, the
PSNR values were higher for the medium-frequency blocks
because of the higher sampling rates used in our approach for
the data in the middle of the Fourier domain.

Similar reconstruction performance tests were done on the
various phase unwrapping methods presented above. Our ex-
perimental results indicated that the PCG method shows the
highest median PSNR values. The overall best reconstructions
(based on the maximum achieved PSNR) were achieved using
Flynn’s minimum discontinuity method. Both methods resulted
in similar statistical values, and our choice again returns to the
amount of unwrapping performed by each method. As noted
previously, Flynn’s minimum discontinuity method produces
the globally minimal phase unwrapping solution. Errors within
an unwrapped surface that is represented by a smaller range
of phase values will produce a smaller absolute error when
the phase is rewrapped by the inverse FFT operation than an
unwrapped surface with greater range in the unwrapped phase
values. The PCG and Flynn method are both iterative as they
solve optimization problems.
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TABLE III
IMAGE RECONSTRUCTION PERFORMANCE, PHASE, AND MAGNITUDE SAMPLING
Sampling Reconstruction Medn PSNR Mo bSIM

Rate Method Rural Natural Urban Rural Natural Urban
Images Images Images Images Images Images

. Ord. Isot. Kriging 81.57 73.02 63.68 09114 0.8434 0.8718

i i Cubic Spline 82.91 69.55 60.18 0.9033 0.7717 0.8239
v : Bilinear 83.88 70.44 61.24 0.9141 0.7894 0.8384
o Nearest Neighbor 81.78 68.42 58.97 0.8893 0.7431 0.8075

. Ord. Isot. Kriging 79.53 71.93 62.40 0.9019 0.8298 0.8577

&4 % Cubic Spline 80.18 66.21 58.31 0.8857 0.7386 0.7983
z : Bilinear 81.11 67.11 59.52 0.8968 0.7584 0.8158
o Nearest Neighbor 78.81 65.52 57.27 0.8631 0.7101 0.7835

s Ord. Isot. Kriging 78.42 71.09 61.71 0.8952 0.8168 0.8490

o é Cubic Spline 78.28 64.12 56.48 0.8717 0.7210 0.7688
@« :; Bilinear 79.03 64.97 57.39 0.8806 0.7411 0.7837
o Nearest Neighbor 76.17 64.10 56.29 0.8333 0.7012 0.7697

. Ord. Isot. Kriging 75.89 63.85 54.02 0.8565 0.7440 0.7318

- a Cubic Spline 82.91 69.55 60.18 0.9033 0.7717 0.8239
v ; Bilinear 83.88 70.43 61.24 0.9141 0.7894 0.8384
o Nearest Neighbor 81.78 64.10 58.97 0.8893 0.7431 0.8075

& Ord. Isot. Kriging 74.90 63.24 53.56 0.8511 0.7319 0.7178

B i Cubic Spline 80.18 66.21 58.31 0.8857 0.7386 0.7983
i 3 Bilinear 81.11 67.11 59.52 0.8968 0.7584 0.8158
o Nearest Neighbor 78.81 65.52 57.27 0.8631 0.7101 0.7835

. Ord. Isot. Kriging 74.22 62.78 53.31 0.8461 0.7213 0.7110

© a Cubic Spline 78.28 64.12 56.48 0.8717 0.7210 0.7688
= ﬁ Bilinear 79.03 64.97 57.39 0.8806 0.7411 0.7837
o Nearest Neighbor 76.17 68.42 56.29 0.8333 0.7012 0.7697

. Ord. Isot. Kriging 68.75 56.72 47.43 0.7620 0.6250 0.5302

= i Cubic Spline 69.40 56.02 46.11 0.7617 0.5898 0.4658
x : Bilinear 69.69 56.40 46.50 0.7724 0.6085 0.4823
- Nearest Neighbor 68.16 55.39 45.46 0.7434 0.5774 0.4389
Ord. Isot. Kriging 68.31 56.37 47.21 0.7586 0.6231 0.5176

- § Cubic Spline 69.31 56.01 46.16 0.7618 0.5945 0.4688
@\ : Bilinear 69.63 56.44 46.65 0.7733 0.6156 0.4866
Nearest Neighbor 68.04 55.33 45.53 0.7456 0.5879 0.4472

Ord. Isot. Kriging 67.98 56.09 47.10 0.7558 0.6179 0.5136

- § Cubic Spline 69.33 55.81 46.37 0.7643 0.5946 0.4687
2 : Bilinear 69.63 56.28 46.79 0.7740 0.6176 0.4852
Nearest Neighbor 67.53 54.99 45.52 0.7399 0.5895 0.4489

Ord. Isot. Kriging 67.16 55.28 45.96 0.7613 0.6379 0.4709

= § Cubic Spline 66.85 54.21 45.01 0.7457 0.6072 0.4350
] ; Bilinear 67.09 54.53 4532 0.7544 0.6339 0.4470
Nearest Neighbor 66.30 53.57 44.57 0.7417 0.5787 0.4156

Ord. Isot. Kriging 67.26 55.29 46.15 0.7705 0.6482 0.4767

— °|n\° Cubic Spline 66.93 54.24 45.10 0.7479 0.6180 0.4399
©n : Bilinear 67.20 54.55 45.49 0.7579 0.6323 0.4527
Nearest Neighbor 66.00 53.70 44.60 0.7405 0.5949 0.4221

Ord. Isot. Kriging 67.07 55.05 46.09 0.7699 0.6463 0.4739

o ef Cubic Spline 67.18 53.92 45.40 0.7532 0.6192 0.4417
2] 3 Bilinear 67.40 54.16 45.74 0.7614 0.6193 0.4540
Nearest Neighbor 65.59 53.38 44.63 0.7395 0.5984 0.4270

D. Image Reconstruction Comparisons

We provide comparative image reconstruction results based
on Kriging, bilinear, cubic spline, and nearest neighbor in-
terpolation. Tables III and IV summarize the reconstructed
image quality for each image class in terms of average PSNR

and SSIM values at each sampling rate. In each case, the
corresponding phase and magnitude sampling geometry can
be found in Table I. Magnitude-only interpolation results are
presented in the upper part of the table for sampling geometries
S1-S3. Combined magnitude and phase interpolation results
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TABLE 1V
IMAGE RECONSTRUCTION PERFORMANCE, COMPARING [SOTROPIC AND ANISOTROPIC MODELS USING ORDINARY AND UNIVERSAL KRIGING
Sampling Reconstruction Meank SR Mean SSIM
Rate Method Rural Natural Urban Rural Natural Urban
Images Images Images Images Images Images
. Ordinary Isotropic 81.57 73.02 63.68 0.9114 0.8434 0.8718
- ; Ord. Anisotropic 80.37 71.75 62.53 0.9144 0.8181 0.8553
2 2 Um.versal.lsotropflc 78.75 69.98 61.28 0.8883 0.7855 0.8388
Univ. Anisotropic 78.49 69.85 61.22 0.8860 0.7829 0.8380
o Ordinary Isotropic 79.53 71.93 62.40 0.9019 0.8298 0.8577
o fg Ofd. Amsotroplct 77.19 70.08 61.09 0.8998 0.8058 0.8394
',T; Um?/ersalllsotrophlc 70.30 67.52 58.46 0.8007 0.7578 0.8003
Univ. Anisotropic 70.38 67.34 58.24 0.7998 0.7537 0.7968
o Ordinary Isotropic 78.42 71.09 61.71 0.8952 0.8168 0.8490
8 :‘: UOfd. Amsotroplc' 75.73 69.44 60.67 0.8935 0.7944 0.8352
8. m'versalilsotrop%lc 70.39 64.18 55.21 0.7937 0.7031 0.7559
Univ. Anisotropic 70.48 64.28 55.05 0.7951 0.7046 0.7536
. Ordinary Isotropic 75.89 63.85 54.02 0.8565 0.7440 0.7318
< % Ord. Anisotropic 75.04 63.35 54.58 0.8730 0.7507 0.7498
2 g Universal Isotropic 75.97 64.86 54.98 0.8767 0.7538 0.7444
! Univ. Anisotropic 75.28 63.86 54.31 0.8691 0.7330 0.7351
. Ordinary Isotropic 74.90 63.24 53.56 0.8511 0.7319 0.7178
G & Ord. Anisotropic 73.26 62.74 53.85 0.8611 0.7413 0.7367
@ 3 Universal Isotropic 73.87 64.04 54.46 0.8640 0.7428 0.7290
B Univ. Anisotropic 73.03 63.13 54.06 0.8478 0.7209 0.7176
. Ordinary Isotropic 74.22 62.78 53.31 0.8461 0.7213 0.7110
© s Ord. Anisotropic 72.05 62.26 53.05 0.8767 0.7538 0.7444
@ 2 Universal Isotropic 72.53 63.32 53.10 0.8478 0.7180 0.7192
B Univ. Anisotropic 72.45 62.30 53.13 0.8419 0.6949 0.7097
. Ordinary Isotropic 68.75 56.72 47.43 0.7620 0.6250 0.5302
- 2 Ord. Anisotropic 67.32 57.00 47.23 0.7627 0.6313 0.5075
n : Universal Isotropic 67.19 56.77 46.95 0.7457 0.6148 0.4952
~ Univ. Anisotropic 66.99 56.63 46.87 0.7386 0.5880 0.4814
Ordinary Isotropic 68.31 56.37 47.21 0.7586 0.6231 0.5176
- § Ord. Anisotropic 67.19 56.90 47.18 0.7680 0.6356 0.5017
n : Universal Isotropic 63.68 56.44 46.58 0.6788 0.6128 0.4822
Univ. Anisotropic 63.74 56.31 46.44 0.6749 0.5857 0.4663
Ordinary Isotropic 67.98 56.09 47.10 0.7558 0.6179 0.5136
& § Ord. Anisotropic 67.27 56.72 47.16 0.7723 0.6284 0.5006
&2 : Universal Isotropic 64.06 5527 45.74 0.6944 0.5871 0.4690
Univ. Anisotropic 64.11 55.28 45.59 0.6880 0.5564 0.4519
Ordinary Isotropic 67.16 55.28 45.96 0.7613 0.6379 0.4709
= °c\° Ord. Anisotropic 65.38 54.60 45.44 0.7434 0.6197 0.4410
©» ; Universal Isotropic 65.06 54.30 45.18 0.7232 0.5959 0.4273
Univ. Anisotropic 65.00 54.26 45.10 0.7168 0.5699 0.4126
Ordinary Isotropic 67.26 55.29 46.15 0.7705 0.6482 0.4767
= em\° Ord. Anisotropic 65.65 54.82 45.62 0.7539 0.6335 0.4467
©» ; Universal Isotropic 62.43 54.47 45.07 0.6792 0.6085 0.4271
Univ. Anisotropic 62.40 54.43 44.94 0.6730 0.5798 0.4105
Ordinary Isotropic 67.07 55.05 46.09 0.7699 0.6463 0.4739
a § Ord. Anisotropic 65.81 54.59 45.64 0.7584 0.6288 0.4466
©» 3 Universal Isotropic 62.61 53.48 44.34 0.6920 0.5907 0.4201
Univ. Anisotropic 62.58 53.56 44.21 0.6854 0.5625 0.4033

are given in the lower part of the table for sampling geometries

S4-S12.

In terms of SSIM, we consider reconstruction results to be
excellent if they achieve values above 0.75 (maximum = 1.0,
see [20]). One of the most exciting results is that we can achieve
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excellent reconstructions for rural images using just 6.01% of
the original FFT samples by sampling geometry S12. For this
geometry, for the high-frequency blocks, only one out of 64
phase samples are kept. The caption in Table I provides more
details for S12. Ordinary, anisotropic Kriging provides the best
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Kriging Reconstruction, SSIM: 0.87, PSNR: 65.14 Cubic Spline Reconstruction, SSIM: 0.77, PSNR: 58.84
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Fig. 7. Urban image reconstruction example based on S3 (see Table I). The top reconstruction is a sample urban scene in which the magnitude downsampling
rate was eight in the middle frequency blocks in each dimension and 16 in the outer frequency blocks in each dimension using the Kriging interpolator for the
magnitude coefficients. (b) Same image using Spline interpolation.

Fig. 8. Natural image reconstruction example based on S5 (see Table I). (a) Ordinary Kriging with Isotropic Model reconstructed image (PSNR = 68.42 dB).
(b) SSIM image (mean value = 0.8018). (¢) Ordinary Kriging with Anisotropic Model reconstructed image (PSNR = 67.29 dB). (d) SSIM image
(mean value = 0.7970). (e) Universal Kriging with Isotropic Model reconstructed image (PSNR = 68.24 dB). (f) SSIM image (mean value = 0.7966).
(g) Universal Kriging with Anisotropic Model reconstructed image (PSNR = 67.78 dB). (h) SSIM image (mean value = 0.7882). (i) Bicubic interpolation
reconstructed image (PSNR = 69.02 dB). (j) SSIM image quality map for bicubic interpolation reconstructed image (mean value = 0.7670). (k) Original Image
for comparison.

mean-SSIM results for this case. Same goes for S11 at just geometry). For the S5 sampling geometry, it is interesting to
6.45% and S10 at just 8.2% of the 2-D FFT samples. note that bilinear interpolation outperformed all other methods.

For natural images, we do not get excellent reconstructions Among Kriging methods, Universal Kriging with isotropic
until we increase the sampling rate to 24.02% (S5 sampling modeling has generally given better results for the S4 (25.78%)
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and S5 (24.02%) geometries. For these geometries, in terms of
image quality, Universal Kriging with isotropic modeling gives
excellent performance. The very best reconstructions are given
by OK interpolation for reconstructions based on magnitude-
only interpolation (S1-S3 for 26.71% to 28.91%). Bilinear
interpolation provides the best results at the lower sampling
rates associated with S4 and SS5. For urban images, excellent
reconstructions can be obtained with just 23.58% of the samples
(S6 sampling geometry). Again, OK with isotropic modeling
dominates over other reconstruction methods for magnitude-
only interpolation while bilinear dominates when phase in-
terpolation is added. Anisotropic Kriging methods did give
better reconstructions for some geometries (e.g., S6 and S9).
It is interesting to note that in the cases where Universal and
anisotropic Kriging ouperformed Ordinary, isotropic Kriging,
bilinear interpolation yielded the best results. In fact, in all these
cases, Bilinear interpolation did better than Kriging methods.

Fig. 7 shows the reconstructed urban scene for the S3
sampling geometry (see Table I). The reconstruction in (a)
was achieved using the Kriging interpolator for magnitude and
used the original phase spectra in the reconstruction. Note the
improvement in SSIM (+9.64%) and PSNR (46.3 dB) over the
cubic spline interpolated reconstruction in (b).

Fig. 8 shows a reconstructed natural image scene for the
S5 sampling geometry (see Table I). In terms of PSNR, OK
with isotropic modeling and Bicubic interpolation gave similar
performance (68.4 dB versus 69.0 dB). On the other hand, the
average SSIM was better for OK (0.80 versus 0.77). A careful
comparison of the SSIM quality maps in Fig. 8 (b) and (j)
shows significant differences. For the Bicubic reconstruction,
the SSIM quality maps seem to be highly correlated to the
input image. This implies that the Bicubic reconstruction does
not provide a model that works uniformly over different image
structures. Kriging reconstructions do better in this respect. The
Kriging SSIM maps of Fig. 8 do not have strong correlations to
the input image. Overall, it is interesting to note that OK with
isotropic modeling did better than all other Kriging approaches.
Universal Kriging with isotropic modeling was a close second.
It is also interesting to note that anisotropic models did not
perform better than the isotropic models. Spatially, we can see
image structures among many different directions in the input
image. This probably contributes to the fact that picking the
dominant direction did not work so well.

V. CONCLUSION

In this paper, we have developed a nonstationary spectral co-
variance modeling technique for application to both phase and
magnitude interpolation. We have developed scalable sampling
geometries that also allow for independent rates for the phase
and magnitude. Excellent image reconstructions are obtained
using a fraction of the original FFT magnitude and phase
samples. This allows the compression of remote sensing images
by representing them with a fraction of the FFT coefficients.

By partitioning the frequency spectrums into independent
blocks, we provide a nonstationary method that produces an
effective spectral covariance model over small, intrinsically
stationary regions. Theoretical variogram models were then
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calculated for each block in an adaptive fashion, ensuring the
selection of the best models. Using the optimal models, we
were able to reconstruct the phase and magnitude spectra using
stochastic or deterministic interpolation methods. Using indi-
vidual reconstructions from ten images and 12 frequency blocks
per image (keeping the two low-pass blocks “as is”’), we were
able to explore the effect of the number of samples (which is
proportional to the block sample rate) used in the Kriging esti-
mate and discovered that a relationship exists between the num-
ber of samples used in Kriging and the reconstruction accuracy.

The large number of Kriged phase blocks allowed for a quan-
titative comparison between phase unwrapping methods. The
path following phase unwrapping algorithms result in unique
phase surfaces. We have shown that some unwrapping methods
result in phase surfaces that are better suited for our spectral
statistical modeling approach. It was found that both the Flynn’s
minimal discontinuity and both minimum norm methods
(weighted multigrid and PCG) resulted in much better block
reconstructions. Our decision to implement Flynn’s method was
due to the fact that it generally results in a smaller range in the
unwrapped values, from which localized interpolation values
will result in a smaller absoluter error when the inverse 2-D FFT
is applied to the reconstructed magnitude and phase spectra.

For urban images, OK with isotropic modeling gave the best
interpolation results at extremely low sampling rates (6.01%).
This method also gave the best reconstruction results for
magnitude-only interpolation for natural and urban images.
Universal Kriging with linear trends and isotropic models
gave excellent results for the S4 (25.78%) and S5 (24.02%)
geometries.

In terms of performance and computational complexity, Or-
dinary, isotropic Kriging was the preferred method. It produced
satisfactory results given that it was the simplest and most
efficient method in terms of computational complexity. Our in-
vestigation suggests that it worked better by avoiding overfitting
the magnitude spectrum data. Furthermore, compared to the
best deterministic approaches, Kriging methods provided im-
age reconstructions with more uniform quality (see Fig. 8). In
contrast, the quality of reconstructions from deterministic meth-
ods appears to correlate strongly to the input image (see Fig. 8).
Overall, by considering Universal Kriging with trend functions,
stochastic models allow for better flexibility in the model.

The paper did not investigate lossless encoding methods.
Lossless phase encoding can be used in addition to magnitude
interpolation to improve the results. Phase interpolation is clear-
ly much more challenging than magnitude interpolation. Phase
unwrapping makes the phase interpolation process possible.
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