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Abstract—Medical image analysis methods require the use
of effective representations for differentiating between lesions,
diseased regions, and normal structure. Amplitude Modulation
- Frequency Modulation (AM-FM) models provide effective
representations through physically meaningful descriptors of
complex non-stationary structures that can differentiate between
the different lesions and normal structure.

Based on AM-FM models, medical images are decomposed
into AM-FM components where the instantaneous frequency pro-
vides a descriptor of local texture, the instantaneous amplitude
captures slowly-varying brightness variations, while the instan-
taneous phase provides for a powerful descriptor of location,
generalizing the traditionally important role of phase in the
Fourier Analysis of images.

Over the years, AM-FM representations have been used in a
wide variety of medical image analysis applications based on a
vastly reduced number of features that can be easily learned by
simple classifiers. The paper provides an overview of AM-FM
models and methods, followed by applications in medical image
analysis. We also provide a summary of emerging trends and
future directions.

Index Terms—Image representations, AM-FM models, medical
image analysis, texture.

I. INTRODUCTION

The complex non-stationary characteristics of medical im-
age structures require the development of effective, easy
to visualize, and meaningful image representations. Medical
image regions can often be characterized by complex textures
that are associated with specific diseases. There is a clear
need for medical image models that can be spatially adaptive,
physically meaningful, and that can also be easily modified to
target specific diseases.

The recent development of Convolutional Neural Networks
has provided methods that yield excellent segmentation and
classification results for several image analysis methods (e.g.,
see [1]). The lower layers of Convolutional Neural Networks
are defined in terms of the use of several layers of intercon-
nected filterbanks, followed by max pooling layers to extract
image features. Yet, due to the large number of layers that
are often involved, Convolutional Neural Networks are very
hard to interpret, requiring a careful analysis of the outputs
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of a large numbers of convolutional layers. Unfortunately,
there is no clear path for analyzing convolutional layers in
the frequency domain because linearity is lost due to the use
of several max pooling layers. Furthermore, if not required,
interpretability is highly desired for medical imaging applica-
tions. The lack of clear interpretability of Convolutional Neural
Networks can significantly limit their wider acceptance by
medical professionals. For applications in medical diagnosis,
explainability is required by law in the European Union [2].

AM-FM models are inherently interpretable by using well
understood concepts based on the instantaneous frequency and
the instantaneous amplitude. When combined with filterbanks,
a primary motivation for the current paper, AM-FM models
provide a simple and natural interpretation of the filterbank
outputs. AM-FM filterbanks are directly defined in the fre-
quency domain while their outputs are naturally described
using AM-FM functions. AM-FM methods use a single filter-
bank layer defined using a small number of parameters (e.g.,
number of orientations and a half-peak overlap requirement)
that can be easily visualized in the frequency domain. There
is clearly strong motivation to study AM-FM representations
for understanding filterbank outputs and also to use AM-FM
representations for learning interpretable filterbanks that are
used with Convolutional Neural Networks, extending ongoing
research (e.g., see [3], [4]).

AM-FM methods can clearly benefit from the use of deep
learning methods for feature selection and classification. As
we shall describe later in this paper, AM-FM representations
generate several AM-FM components with associated features
(e.g., instantaneous frequency and instantaneous amplitude
features) that require feature selection. Deep learning methods
can be used to support feature selection and classification
using interpretable AM-FM features. Yet, so far, there has not
been a major study that combines AM-FM features with deep
learning. Deep learning methods can be used to reduce the
large number of generated AM-FM features and then use them
to provide better classification performance.

We proceed to introduce AM-FM models and explain how
they can be used to provide effective representations for
biomedical images. Let I(x, y) denote an input image. We
decompose the image into its AM-FM components using (e.g.,
see early work in [5]):

I(x, y) =
K∑
n=1

an(x, y) cosϕn(x, y) (1)
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Fig. 1. A framework for computing multiscale AM-FM models and features for medical image classification.

where n = 1, . . . ,K indexes the AM-FM components, an
denotes the instantaneous amplitude (IA) for the n-th AM
component, and ϕn denotes the instantaneous phase (IP) for
the n-th FM component. In addition, the gradient of the phase,
∇ϕn(x, y) represents the instantaneous frequency (IF) for the
n-th FM component.

For medical image analysis applications, the IA is associated
with the spatial extend of specific structures (e.g., see [6],
[7]). To see this, first note that AM-FM decompositions are
often computed through the application of a filterbank. Hence,
since convolution is a linear operator, brighter regions will
clearly generate stronger responses and hence large values for
the corresponding an(x, y). On the other hand, darker regions
will then generate weaker responses and lower values for the
corresponding an(x, y). Furthermore, the IA is slowly-varying
as opposed to strong spatial texture variations that generate
high-frequency components [6], [8], [7]. Complex texture
variations are described by the FM components cosϕn(x, y)
(see [8]).

AM-FM representations allow for an intuitive, spatially
adaptive interpretation of local frequency content. Locally, the
IF vectors are orthogonal to ridges or edge structures and have
a magnitude that is inversely proportional to the instantaneous
wavelength, the distance to the next ridge or strong edge
[9]. More generally, FM flow lines can be used to describe
changes throughout the image as described by the ordinary
differential equations derived in [9]. In medical image analysis
applications, we often find that discriminating features are
associated with specific ranges of values of the IF components.
In particular, to maintain rotational invariance in the extracted
features, we extract AM-FM components with different ranges
of the IF magnitude. In particular, we use the terms: (i) low-
scale, (ii) medium-scale, and (iii) high-scale to refer to low,
medium, and high magnitudes of the IF.

We introduce a typical framework for computing AM-FM
decompositions in Fig. 1. Initially, the image can be prepro-
cessed for normalization, to perform illumination correction,
and to standardize image resolution. Image normalization and
illumination correction will help reduce non-uniform illumi-
nation artifacts and hence reduce variability in the extracted
AM-FM features. If possible, the standardization of image res-
olution refers to the application of image resampling methods
to ensure that all images are sampled at the same number of
pixels per unit length (e.g., pixels per mm). It is important to
note that the standardization of image resolution will ensure
that the extracted instantaneous frequencies will correspond to
actual physical frequencies. The preprocessed images are then
analytically extended and filtered through a multichannel filter-

bank. For computing multiscale decompositions, we associate
scales with specific groups of filters (e.g., low, medium, or
high frequency magnitude filterbank channels). The AM-FM
components and features are then extracted from each scale
or selected group of filters and input into a classifier.

We present a multiscale example in Fig. 2. In this example,
the goal is to differentiate between normal and abnormal
regions in mammography. By comparing the original input
images (see Figs. 2(a) and 2(d)), we can see that the abnormal
region appears brighter. Yet, in terms of the IA PDF plots of
Figs. 2(g) and 2(i), we note that the opposite pattern is revealed
for the medium and high scales. The IA for the abnormal
regions for these scales are much lower, suggesting that the
original image brightness reflects the behavior at the lowest
scales. From the medium-scale AM-FM reconstructions of
Figs. 2(b) and 2(e), we can see a nearly binary appearance of
the abnormal region as opposed to the grayscale appearance
of the normal region. The dramatic difference is due to the
fact that the PDF of the IA of the abnormal region is far more
concentrated near the peak as opposed to the PDF of the IA
that is widely spread (see Fig. 2(g)). In terms of the IF, we
can see the presence of higher IF magnitudes for the abnormal
region at the high scale (see Figs. 2(j), (c), (f)).

The objective of this paper is to present a comprehensive
review of application of multiscale AM-FM models and meth-
ods in medical imaging. The review is far more exhaustive,
detailed, up to date and significantly different than an earlier
review of emerging AM-FM methods presented in [10]. The
coverage includes a thorough discussion of AM-FM repre-
sentations, extensive coverage of demodulation methods, and
an expanded list of medical imaging applications, including
several applications that appeared since the publication of [10].

In Section II, we provide a summary of continuous-space
and discrete-space AM-FM representations. In Section III,
we provide a summary of methods for estimating AM-FM
decompositions. We then provide a comparison of different
methods in Section IV and provide several applications in
medical image analysis in Section V. Emerging trends possible
future directions are summarized in Section VI. We provide
concluding remarks in Section VII.

II. AM-FM REPRESENTATIONS

In this section, we describe AM-FM representations that
can be derived from popular Fourier representations and
filterbanks. We begin with continuous-space representations in
section II-A. We summarize discrete-space representations in
section II-B. Multiscale AM-FM representations are presented
in section II-C.
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Fig. 2. Mammography image analysis example. The example demonstrates the separation of normal from abnormal ROIs using multiscale AM-FM methods.
AM-FM reconstructions are of the form a(x, y) cosϕ(x, y). The IF magnitude is given by ||ϕ(x, y)||. All images have been normalized for maximum
contrast. (a) Normal ROI. (b) Medium-scale AM-FM reconstruction of normal region. (c) High-scale AM-FM reconstruction of normal region. (d) Abnormal
ROI. (e) Medium-scale AM-FM reconstruction of abnormal region. (f) High-scale AM-FM reconstruction of abnormal region. (g) Medium-scale Probability
density function (PDF) plots for normal IA using a continuous line versus abnormal IA using a dotted line. (h) Medium-scale PDF plots for normal IF
magnitude using a continuous line and abnormal IF magnitude using a dotted line. (i) Same as in (g) for high-scale. (j) Same as in (h) for high-scale.

A. Continuous-Space AM-FM Representations Derived from
Fourier Representations

Efficient continuous-space AM-FM representations can be
derived from Fourier-domain representations. As we describe
next, the basic idea is to extend the application of effective
Fourier representations from an idealized image space to the
projected space of observed images.

Let I denote the observed image and Iideal denote an
ideal image model that has an effective representation
in the Fourier domain. We model the observed image

in terms of the ideal image using I(x, y) = a(x, y) ·
Iideal (φco1(x, y), φco2(x, y)) where the amplitude function
a(x, y) captures image illumination variations and (x, y) →
Φ(x, y) = (φco1(x, y), φco2(x, y)) describes a curvilinear
coordinate transformation associated with the resampling of
the ideal image as the observed image.

An early medical imaging example was presented in [6]. In
[6], the authors developed an AM-FM model that describes
the regular spacing of sarcomeres in human skeletal muscle
as observed in electron microscopic images. The basic idea
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TABLE I
SUMMARY OF NOTATION USED THROUGHOUT THE PAPER. WE USE x− y
FOR CONTINUOUS-SPACE COORDINATES (E.G., I(x, y)) AND k1 − k2 FOR

DISCRETE-SPACE COORDINATES (E.G., I[k1, k2]). WE ALSO USE Î FOR
FOURIER TRANSFORMS AND Ǐ FOR AM-FM TRANSFORMS.

Continuous-space AM-FM Representations
Symbol Definition

I(x) 1D signal defined over x coordinate.
I(x, y) image defined on x− y coord. system.
Î(f1, f2) 2D Fourier Transform of I(x, y).
Ǐ(f1, f2) 2D AM-FM Transform of I(x, y).
an(x, y) n-th Instantaneous Amplitude comp.
ϕn(x, y) n-th Instantaneous Phase component.
∇ϕn(x, y) n-th Instantaneous Frequency comp.
cosϕn(x, y) n-th FM component.
an(x, y) cosϕn(x, y) n-th AM-FM component.

AM-FM Representations Based on Curvilinear Coord. Systems
(x, y)→ Φ(x, y) = (φco1(x, y), φco2(x, y)) denotes a coord. transf.

exp
(
j 2π
Thor

nφco1(x, y)
)

· exp
(
j 2π
Tvert

mφco2(x, y)
) FM harmonics derived from Φ

applied to 2D periodic image with
periods Thor, Tvert.

cos (nϕco1(x, y)) FM harmonic along a curv. coord.

exp
(
j2π

(
f1φco1(x, y)

+f2φco2(x, y)
) FM harmonics used with AM-FM

Transforms.

Discrete-Space AM-FM Representations used with Algorithms
Symbol Definition

I[k] 1D defined over discrete coord. k.
I [k1, k2] Image over discrete coords. k1 − k2.
Î[f1, f2] 2D FFT of I[k1, k2].
Ǐ [m1,m2] Discrete-space FM Transform.
IAS [k1, k2] Analytic image computed using the FFT.

IAS,i [k1, k2]
Analytic image processed through
the i-th channel filter.

an[k1, k2], ϕn[k1, k2] Discrete-space of IA and IP components.
ac,i, φc,i,∇φc,i c-channel estimates of IA, IP, and IF.

an[k] cosφn[k] 1D AM-FM comp. assoc. with IMFn[k].

exp
(
j 2π
N

(m1φ1[k1, k2]
+m2φ2[k1, k2])

) Discrete-space FM harmonics.

is to apply a coordinate transformation to an ideal, periodic
image Iideal with periods Thor and Tvert to get an AM-FM
image: I(x, y) = a(x, y) · Iideal (φco1(x, y), φco2(x, y)), where
φco1, φco2 denote the curvilinear coordinates associated with
the coordinate transformation. Then, the original Fourier-
Series becomes a 2D AM-FM series as given by:

I(x, y) =
∑
n

∑
m

an,m · exp

(
j

2π

Thor
nφco1(x, y)

)
· exp

(
j

2π

Tvert
mφco2(x, y)

)
. (2)

In [6], the authors describe how to use AM-FM demod-
ulation over a Gabor filterbank to isolate the fundamental
AM-FM harmonics. We shall describe general methods that
extend this approach. The approach can also be simplified for
the case when periodicity only extends in a single curvilinear
coordinate. For example, as shown in [11] and [8] for finger-
prints and woodgrain images, (2) reduces to the FM harmonics
expression:

I(x, y) =
∑
n

an(x, y) cos (nϕco1(x, y)) . (3)

On the other hand, using the same transformation on the
Fourier Transform, as described in [12] and [13], we can derive
a continuous-space AM-FM representation given by:

I(x, y) = a(x, y)

∫∫
R2

Ǐ(f1, f2)

· exp−
(
j2π
(
f1φco1(x, y) + f2φco2(x, y

))
df1df2 (4)

where Ǐ denotes the AM-FM transform, a(x, y) > 0, and Ǐ
can be computed over the image plane using:

Ǐ(f1, f2) =

∫∫
R2

I(x, y)

a(x, y)
exp

(
j2π
(
f1φco1(x, y)

+ f2φco2(x, y)
))
|det (jac(Φ(x, y)))| dx dy (5)

where Φ(R2) refers to the mapping of R2 by Φ to the
region defined by (φco1, φco2) and where det (jac(Φ(x, y)))
denotes the determinant of the Jacobian of the coordinate
transformation. The AM-FM transform expressions of (4), (5)
provide a general framework for expanding arbitrary input
images.

In [9], the authors demonstrated a general method for
deriving effective curvilinear coordinate systems that describe
non-stationary image content as a multidimensional frequency
modulation process. The approach is based on defining a
coordinate system based on the local eigenvectors of the
instantaneous frequency tensor.

B. Orthogonal FM Transforms as generalizations of the Dis-
crete Fourier Transform and the Discrete Cosine Transform

Over square images N ×N (where M = N ), using integer
coordinates k1 − k2, we have the development of orthogonal
FM transforms given by [14]:

I [k1, k2] =
1

N

N−1∑
m1=0

N−1∑
m2=0

Ǐ [m1,m2]

· exp

(
j

2π

N
(m1φ1[k1, k2] +m2φ2[k1, k2])

)
(6)

where the discrete-space FM transform is given by

Ǐ [m1,m2] =
1

N

N−1∑
k1=0

N−1∑
k2=0

I [k1, k2]

· exp

(
−j 2π

N
(m1φ1[k1, k2] +m2φ2[k1, k2])

)
. (7)

The authors showed that orthogonal FM transforms as de-
scribed by (6) and (7) are generalizations of the Discrete
Fourier Transform (DFT) and the Discrete Cosine Transform
(DCT). In particular, the basic solution is to have the forward
FM transform consist of a permutation of the input 2D
samples followed by a DFT (or DCT), while the inverse FM
transform would then be an inverse DFT (or DCT) followed
by the inverse permutation. They then showed how to compute
optimal permutations with ideal FM spectra based on the
permutation optimization results given in [15].
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C. Multiscale AM-FM Representations

Multiscale AM-FM representations aim to extract AM-FM
components from different scales. The scales are defined in
terms of the instantaneous frequency magnitude as discussed
in the introduction. Here, we note that AM-FM components
are estimated using discrete-space bandpass filters and thus
cannot be accurately estimated near DC. Based on this ob-
servation, in [16], the authors introduced multiscale AM-FM
representations as given by:

I [k1, k2] ≈ d+ c0G[k1, k2]

+
s∑

n=1

cn an[k1, k2] cosϕn[k1, k2]. (8)

where d denotes the DC component, G[k1, k2] denotes
the output of a low-pass filter, the AM-FM components:
an[k1, k2] cosϕn[k1, k2] are computed over different scales,
and the coefficients c0, c1, . . . , cs are computed so as to
minimize the least-squares error in the reconstruction. An
advantage of multiscale decompositions is that they allow us
to define scales for specific applications. The introduction of
multiscale decompositions with robust AM-FM demodulation
methods described in [16] has led to several applications in
medical image analysis.

III. AM-FM METHODS

We return to Fig. 1 to introduce the basic AM-FM methods.
After preprocessing, we can compute an analytic extension of
the image and then apply a filterbank to produce channel-
based AM-FM components. To estimate individual AM-FM
components, we need to process the channel-based estimates.
We then generate the AM-FM features that are used for
classification. We summarize the notation used throughout the
paper in Table I. While it is important to note that different
authors use very different notations, we have also tried to
explain how their notations relate to our standardized notation
of Table I.

A. Analytic Image

The analytic image extension can be computed effectively
through the application of the 1D Hilbert-transform along each
row as given by [17]:

IAS [k1, k2] = I [k1, k2] + jH1D {I [k1, k2]} (9)

≈
K∑
n=1

an[k1, k2] exp (jϕn[k1, k2]) . (10)

Compared to the original AM-FM model of (1), in (10), we can
see that the real-valued FM components: cosϕn[k1, k2] are re-
placed by their exponential forms: exp (jϕn[k1, k2]). Further-
more, the computation of the analytic signal is very straight-
forward. To implement (9), we simply take the 2D FFT of
the input image I[k1, k2], zero-out the left two-quadrants with
negative horizontal frequency component frequencies, keep
the line of zero horizontal frequency components unchanged,
double the amplitudes of the remaining frequencies, and take
the inverse 2D FFT. Based on this approach, it is easy to see

a, φ,∇φ

ac,1, φc,1,∇φc,1

ac,F , φc,F , ∇φc,F

Pac,1

ac,F P = argmaxi ac,i

Fig. 3. Dominant Component Analysis over different scales. In this example,
the c is used to index the different scales. Within each scale, at each pixel, the
largest IA estimate is used to select the IA, IF, and phase from the dominant
filter.

that the approximation in (10) holds exactly for the 2D FFT
harmonics. In other words, for images of size N×M , it is easy
to see that A cos [2πn1 k1/N + 2πm1 k2/M ] gets transformed
to A exp [j2πn1 k1/N + j2πm1 k2/M ] (except for the line of
zero horizontal frequency components).

In [18], the authors provide a review of the literature
on multidimensional Hilbert transform extensions and define
the Hypercomplex Signals based on the quarterionic Fourier
transform. Alternatively, the monogenic signal is based on
replacing the Hilbert transform by the Riesz transform as
described in [19], [20].

B. A Baseline Approach Based on Multiscale Filterbanks

After computing the analytic image, we should use a filter-
bank to reject out-of-band noise and to isolate the components.
Our assumption here is that the filterbank contains a number of
filters that clearly exceeds K, the number of AM-FM compo-
nents given in (10). In what follows, we present a framework
for using filterbanks for estimating AM-FM components. In
subsequent sections, we will also provide variations of this
framework.

Let hc,i denote the impulse responses of the filterbank
associated with scale c. For each filter, we generate channel-
based AM-FM components as given by:

IAS,i [k1, k2] = IAS [k1, k2] ∗ hc,i[k1, k2]

= ac,i[k1, k2] exp (jϕc,i[k1, k2]) , (11)

where ∗ denotes the convolution operator. We can then es-
timate the AM-FM components using channel component
analysis [17], [21]:

ac,i[k1, k2] =
|IAS,i [k1, k2]|

Hc,i(∇ϕc,i[k1, k2])
(12)

ϕc,i[k1, k2] = arctan

(
imag(IAS,i [k1, k2])

real(IAS,i [k1, k2])

)
, and (13)

∇ϕc,i[k1, k2] = real
(
−j∇IAS,i [k1, k2]

IAS,i [k1, k2]

)
, (14)

where Hi(∇ϕc,i[k1, k2]) denotes the amplitude magnitude
of the ith filter at the estimated instantaneous frequency
ϕc,i[k1, k2].
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Fig. 4. Gabor Filterbank with 8 orientations and 5 scales. To visualize the
filterbank, filters intersect at a quarter of the peak value in the example.
Typically, filters will intersect at half-peak.

Next, the goal is to use the channel-based AM-FM compo-
nents to estimate the original AM-FM components. In Domi-
nant Component Analysis [22], the approach is to adaptively
select the channelized estimate with the largest instantaneous
amplitude at each pixel. More generally, in scale-based meth-
ods, the approach was modified to restrict the selection process
to channels that share a specific range of instantaneous-
frequency magnitudes (e.g., low, medium, and high).

Dominant component analysis (DCA) applied over different
scales is demonstrated in Fig. 3. In Fig. 3, based on the
selected scale, we generate AM-FM channel estimates:

ac,i, φc,i,∇φc,i, i = 1, . . . , F.

At every pixel, we select the filter that gives the maximum
instantaneous amplitude. In Fig. 3, the dominant IA is given
by the P -th channel. We then select ac,P , φc,P ,∇φc,P as the
estimates associated with the dominant scale component. The
procedure is repeated for every pixel in the image. The single-
scale AM-FM component estimate is then formed from the
collection of dominant estimates over the entire image.

Filterbank design can be varied depending on the applica-
tion. We summarize the most popular designs into:
• Gabor Filterbanks provide excellent localization in the

spatial-frequency plane and have been very popular in
computer vision applications [23]–[26]. An example with
8 orientations and 5 scales is given in Fig. 4.

• Separable Multiscale Filterbanks are designed to have
flat passbands to eliminate the need the correction in (12).
Thus, the channel component estimates are accurately
estimated using: ac,i[k1, k2] = |IAS,i[k1, k2]| (see [16]).

• Steerable Filterbanks were used in [27] based on
[28], [29]. Steerable pyramids decompose images into
scale and orientation selective subbands based on polar-
separable directional derivative operators.

C. Robust estimation

To support robust estimation, we introduce three method-
ological improvements recommended in [16]: (i) optimal fil-
terbanks for estimating the IA, (ii) post-filtering the maximum
filter indexes in Fig. 3, and (iii) robust IF estimation using two
samples. The combined use of these approaches result in better

estimates of the IA, the IF, and better and continuous AM-FM
component estimates overall.

We begin with the recommendation for optimal filterbanks.
The basic idea is to use separable 1D filterbank design to
achieve unit gain over the passband in each filter. As a
result, the IA estimation formula of (12) is simplified by
having Hc,i(∇ϕc,i[k1, k2]) ≈ 1 to become ac,i[k1, k2] =
|IAS,i [k1, k2]|. The advantage of the approach is that the
variations of Hc,i(∇ϕc,i[k1, k2]) will no longer affect the
estimation of the IA.

To support a better estimation of the original AM-FM
components an(x, y) cosϕn(x, y) given in (1), we need to
support spatial continuity of the AM-FM components. The
advantage of spatial continuity was shown in [9], where the
continuity of the IF estimates was used to derive and solve the
differential equations that describe the frequency modulation
process throughout the image. In [16], spatial continuity was
facilitated by post-filtering the maximum IA filters indexes
P shown in Fig. 3. In [16], the P image, representing the
filter index that gave the largest IA value at each pixel,
was post-processed using a median filter to avoid oscillating
between filters from pixel to pixel. As a result, severe artifacts
and discontinuities were removed from the resulting AM-FM
estimates.

Third, in [16], the authors developed a robust method for
estimating the IF from two samples. To support the idea, prior
to computing the analytic signal, for each central frequency
of each filter (ωi,i, ω2,i), we can apply heterodyning using:

I [k1, k2] · exp (jωi,ik1 + jω2,ik2) (15)

to slow-down high-frequency content. After this step, we put
the result through each filter and apply the analytic signal
extension as before. If heterodyning is applied, we will need
to correct the final instantaneous frequency estimates as we
describe below. The proposed robust-demodulation approach
serves as an alternative to (14). To introduce the approach,
we will consider the estimation of ∂ϕ̂c,i[k1, k2]/∂k1. The
estimation of ∂ϕ̂c,i[k!, k2]/∂k2 is very similar.

Let the sum of two analytic output filter outputs be given
by:

S[n1] = IAS,i [k1 + n1, k2] + IAS,i [k1 − n1, k2]. (16)

where the integer spacing between the samples, 2n1 is allowed
to vary. To generate a robust IF estimate with minimum
condition number, we look for n1,opt that minimizes the
absolute sum

min
n1

|S[n1]| (17)

subject to: 2n1 · (∂ϕc,i[k1, k2]/∂k1) ≤ 2π, and
∂ϕc,i[k1, k2]/∂k1 ∈ SR1,i.

In terms of the constraints, 2n1 · (∂ϕc,i[k1, k2]/∂k1) ≤ 2π
restricts the distance between the samples to be within a
single period, and ∂ϕc,i[k1, k2]/∂k1 ∈ SR1,i requires that the
estimated instantaneous frequency does not fall outside the
first-component spectral support of the i-th filter.
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After solving (17), we plug the optimal value n1,opt into
(16) to get the IF x-component estimate using:

ϕx[k1, k2] ≈ 1

n1
arccos

(
S[n1,opt]

2IAS,i [k1, k2]

)
(18)

In (18), if heterodyning pre-processing was applied, then we
will need to add the offset frequency ωi,i to ϕx to get ωi,i+ϕx
as the final IF component estimate. Overall, the basic idea
is to evaluate the arccos(.) function near zero where it has
the lowest (near-zero) condition number and can thus yield
very robust estimates that are not affected by small, noisy
variations.

D. AM-FM Demodulation Based on Teager Kaiser Energy
Operators

The use of Teager Kaiser energy operators allows us to
redefine the baseline algorithm of section III-B to be based on
estimated signal energy content. Firstly, instead of selecting
the channel filter with the maximum IA (e.g., see Fig. 3),
the channel filter is selected based on an estimate of channel
energy. Secondly, instead of (12) and (14), energy operators
are used to estimate the IF and IA.

We begin with the multidimensional energy operator as
given by [30], [31]:

Ψ {I(x, y)} , ||∇I(x, y)||2 − I(x, y)∇2I(x, y) (19)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 denotes the Laplacian
operator. Under realistic assumptions [31], applying Ψ to
a(x, y) cosϕ(x, y) will yield the signal energy estimate given
by:

Ψ {a(x, y) cosϕ(x, y)} ≈ a(x, y)2‖∇ϕ‖2. (20)

As mentioned earlier, the estimated energy given by (20) is
then used to select the channel with the maximum energy
response, replacing the role of the IA [32]. The IA and IF are
then estimated using [31]:

a(x, y) =
Ψ{I(x, y)}√

Ψ{Ix(x, y)}+ Ψ{Iy(x, y)}
(21)

|ϕx(x, y)| =

√
Ψ{Ix(x, y)}
Ψ{I(x, y)}

(22)

|ϕy(x, y)| =

√
Ψ{Iy(x, y)}
Ψ{I(x, y)}

(23)

More recently, Kokkinos et al. [32] introduced a regularized
2D energy operator and 2D Energy Separation Algorithm
in order to obtain more accurate amplitude and frequency
estimations. A multidimensional higher order Teager-Kaiser
operator was introduced in [33], [34], [35] Teager-Kaiser
energy methods for signal and image analysis were recently
reviewed by Boudraa and Salzenstein in [36].

In [37], the authors introduced 2D multirate frequency
transformations to support effective demodulation of wide-
band images. The basic idea is to convert wideband AM-
FM components to narrowband signals that can provide
more accurate estimates. For the conversion, each image is
first interpolated. Then the resulting image is multiplied by

cos(Ω1k1) cos(Ω2k2) to shift the 2D frequency content to be
centered at (Ω1,Ω2). After heterodyning, a 2D bandpass filter
is applied to reduce the resulting bandwidth, and to allow
effective demodulation. To recover the AM-FM component,
(Ω1,Ω2) is added to the estimated instantaneous frequency and
the resulting image is decimated to the input image resolution.

E. Empirical Mode Decomposition

In the Empirical Mode Decomposition (EMD) approach,
the input signals are expressed as a sum of zero-mean AM-
FM components called intrinsic mode functions (IMFs) and
a residue [38]. IMFs require that (i) the number of extrema
be the same as the number of zero-crossings or differ by at
most by one, and (ii) at any point, the mean value of the two
envelopes defined by the local maxima and minima be zero.
Based on these assumptions, the IMFs are computed using the
sifting process algorithm as described in Fig. 5.

In 1D, the one-dimensional AM-FM decomposition is given
by:

I[k] ≈
K∑
n=1

an[k] cosϕn[k]

=
M∑
n=1

IMFn[k] +R[k]. (24)

where IMFn[k] is the n-th AM-FM component and R[k]
represents the residue of the reconstruction. The number of
IMF components is determined by the stoppage criterion as
described in [39]. As discussed in [39], a large repetition
of the sifting process will produce a collection of FM-only
components. Thus, to produce AM-FM components, the pro-
cess is terminated after the sifting process produces the same
number of zero-crossings and extrema after S = 3 to S = 5
iterations. By varying S, as discussed in [39], the authors
generate confidence limits for the extracted IMFs. Another
important property of the Sifting process is that is computes
low-frequency components first and then proceeds to higher
frequency components.

We note that the sifting process does not use bandpass
filters to reject out-of-band noise. To recognize how the
approach works with noise, note that [40] showed that the
EMD decomposition of fractional Gaussian noise is similar to
the application of dyadic filter banks associated with Wavelet
decompositions.

1) The Ensemble Empirical Mode Decomposition Method:
There are two fundamental problems with the original Sifting
process. First, we have mode mixing issues. In mode mixing,
two or more AM-FM signals get decomposed into different
IMFs. We thus get estimation artifacts that appear as very
disparate amplitudes in individual IMFs or very similar oscil-
lations in different IMFs. Secondly, small perturbations can
yield completely different IMFs [41]. To address these issues,
the authors in [42], provided a noise assisted method, termed
the Ensemble Empirical Mode Decomposition (EEMD).

We summarize the EEMD into four steps [42]. First, we add
white noise to the original data. Second, we apply the Sifting
method to the noise corrupted signals. Third, we repeat the first
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1: function SIFTING (I[k])
2: while not stoppingCriterion do
3: [Maxima, Minima]← extrema (x[k])
4: emax[k] ← fitCubicSplines (Maxima)
5: emin[k] ← fitCubicSplines (Minima)
6: m[k] = (emin[k] + emax[k])/2
7: h[k] = I[k] - m[k]
8: I[k] ← h[k]
9: end while

10: IMF← I[k]
11: end function

Fig. 5. Sifting process the algorithm for computing the EMD.

two steps for different noise levels. Fourth, we take the means
of IMF estimates as the final estimates. The approach also
requires the development of new stoppage criteria as detailed
in [42].

The original EEMD method was improved in the Complete
Ensemble Empirical Mode Decomposition (CEEMD) [43]. For
CEEMD, the first mode is the same as the one generated
by EEMD as the average AM-FM component estimate. For
the second mode, we initially form the residual between the
original signal and the first EEMD estimate as given by:

r1[k] = I[k]− ĨMF1[k].

Then, the second mode (ĨMF2) is set to the average over the
first modes extracted by the EMD algorithm when applied to
an ensemble of r1 with different levels of noise. The second
residual is then formed using:

r2[k] = r1[k]− ĨMF2[k].

From here, the process is repeated to generate the remaining
modes.

2) Multi-dimensional Extensions to the Empirical Mode
Decomposition: We provide a summary of EMD extensions
for digital images. We classify the methods into separable
approaches that were applied along the rows and columns,
and 2D methods that work with 2D extrema.

An early attempt to extend EMD to two dimensions treated
2D images as a collection of 1D slides using 1D EMD along
each 1D slide (see [44]). This early attempt gives preference
to a particular direction and is not appropriate for use in digital
images.

More recently, the multi-dimensional empirical mode de-
composition (MEEMD) extended the EEMD method of sec-
tion III-E1 to avoid biases in any particular direction [45].
The approach can be summarized into three steps. First, the
EEMD is applied along each row. Second, the ensemble of 2D
image outputs are input to the EEMD to generate ensemble
outputs along each column. Third, if we let hi,j denote the
outputs of the second step, the final AM-FM components Ci
are generated using equation (13) of [45] which is:

an[k1, k2] cosϕn[k1, k2] =
K∑
k=n

hi,k +
J∑

j=n+1

hj,i (25)

where K and J denote the ensemble sizes for the columns
and rows respectively. The basic idea in (25) is to generate
component estimates that have comparable minimal scales
along the rows and columns.

The Multi-dimensional Complete Ensemble Empirical
Mode Decomposition with Adaptive noise (MCEEMDAN)
extend the one-dimensional CEEMD by applying the CEEMD
across the rows and then the columns. We refer to [46] for
details.

We provide a brief summary of different variations of the
basic ideas presented here. For the Bidimensional EMD [47]
(BEMD), the authors applied new methods for estimating 2D
extrema and 2D interpolation. In [47], the authors use mor-
phological reconstruction to extract 2D minima and maxima.
Then, instead of using cubic spline interpolation, the authors
use radial basis functions. In [48], the authors used the BEMD
with the monogenic signal (see [19], [20]) to analyze different
textures.

3) Variational Mode Decomposition: To describe the vari-
ational algorithms, we begin with defining the inner-product
for two functions f(x, y) and g(x, y) using:

〈f(x, y), g(x, y)〉 =

∫∫
R2

f(x, y)g(x, y)dx dy.

Using the inner-product, we define the ‖.‖22 norm using:

‖f(x, y)‖22 = 〈f(x, y), f(x, y)〉 .

For the variational decomposition algorithms, the assump-
tion is that AM-FM components are centered around cen-
tral frequencies: ω1, ω2, . . . , ωK , where each n-th component
central frequency is two-dimensional: ωn = (ωn1, ωn2) =
2π(fn1, fn2). Following the authors, we use {ωn} to describe
the set of ω1, ω2, . . . , ωK .

Since the components are assumed to be concentrated along
their central frequencies, the assumption is that the baseband
bandwidth is small and thus the ‖.‖22 norm of the gradient
functional around each component given by:

GradFunc(ωn) =∥∥∥∥∇(IAS (x, y) exp (−j(ωn1x+ ωn2y))

)∥∥∥∥2
2

(26)

is assumed to be small. Clearly, minimizing (26) alone will not
reconstruct general AM-FM components that are not captured
by pure sinusoids. Thus, to avoid this issue, the method
requires minimization of the reconstruction error given by:

RecError({un}) = I(x, y)−
K∑
n=1

un(x, y),

where {un}, as before, represents the set of
u1(x, y), . . . , uK(x, y) which are the estimated AM-FM
components un(x, y) = an(x, y) cosϕn(x, y). Then, the
overall optimization method described in [49] (extending
[50]) is given by:

n=K∑
n=1

αnGradFunc(ωn) (27)

subject to: RecError({un}) = 0. (28)
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where the αn coefficients are used as weights for controlling
the spread around each AM-FM component. In order to solve
the constraint optimization problem, we form the Lagrangian

L ({ωn}, {un}, ρ, λ) =
n=K∑
n=1

αnGradFunc(ωn)

+ EqConstr(ρ, λ,RecError({un})) (29)

where the equality constraint is given by

EqConstr(ρ, λ,RecError({un})) =

ρ ‖RecError({un})‖22 + 〈λ(x, y),RecError({un})〉 (30)

where ρ represents a Lagrange multiplier and λ(x, y) rep-
resents a Lagrange multiplier function needed to solve the
constrained optimization problem. We solve (29) using:

min
{ωn},{un}

max
ρ,λ(x,y)

L ({ωn}, {un}, ρ, λ) . (31)

In order to solve (31), we apply Parseval’s theorem to trans-
form (26) to the frequency domain. After that, we apply
coordinate descent optimization over each AM-FM component
un sequentially and use the centroid frequency of the resulting
analytic signal to estimate ωn. Once all of the AM-FM
components have been estimated, the Lagrangian function is
updated in the frequency domain (using the 2D FFT) using
ascent on the reconstruction error:

λ̂iter+1[f1, f2] = λ̂iter[f1, f2]

+ τ

(
Î[f1, f2]−

n=K∑
n=1

ûiter+1
n [f1, f2]

)
(32)

where iter refers to the iteration number and the rest of the
parameters are set to 1 (see [49]). The algorithm iterates until
there is little relative change in the estimates of ûitern between
iterations.

The method was extended in [51] to account for spatially-
bounded components. For the new model, let {Sn(x, y)}
denote binary (0 or 1) segmentation functions associated
with the corresponding AM-FM components {un(x, y)}. The
approach redefines the reconstruction error to account for the
spatial limitations of each component as given by:

RecError ({un}, {Sn}) = I(x, y)−
K∑
n=1

Sn(x, y)un(x, y).

(33)

Then, in order to estimate the n-th segmentation function, the
method requires the minimization of an additional term given
by:

SegmFunc(βn, γn, Sn) = βn‖Sn(x, y)‖1+γn TV(Sn) (34)

where we define the ‖.‖1 norm using:

‖Sn(x, y)‖1 =

∫∫
R2

|Sn(x, y)|dx dy,

the total variation term is given by:

TV(Sn) = sup
‖G‖≤1

〈Sn(x, y), div (G(x, y))〉 ,

the divergence operator is given by:

div (G(x, y)) =
Gx(x, y)

∂x
+
Gy(x, y)

∂y
.

The modified Lagrangian is given by:

L({ωn}, {un}, {vn}, {Sn},
{αn}, {βn}, {γn}, ρ, λ, {ρn}, {λn}) =

K∑
n=1

(
GradFunc(αn, ωn) + SegmFunc(βn, γn, Sn)

+ EqConstr (ρn, λn(x, y), un(x, y)− vn(x, y))

)
+ EqConstr (ρ, λ,RecError({un}, {Sn})) (35)

where the auxiliary functions vn and the equality constraints
un = vn are used by the optimization algorithm to relax the
constraints and ensure spectral solvability [51].

To minimize the Lagrangian of (35), the authors recommend
the use of coordinate descent through the different functions
as described for (31). The coordinate descent steps for {ωn}
{un} and {vn} are the same as for (31). The big difference
comes from the need to minimize the segmentation functions
{Sn} that use the TV norm. The minimization steps include:
Repeat for t = 1 to T :

1. Apply area penalty and reconstruction fidelity ODE:

∂Sn
∂t

= −βk + 2ρ vn(x, y)

·
(

RecError({un}, {Sn}) +
λ(x)

ρ

)
(36)

2. Apply diffusion equation to generate smoothed regions:

∂Sk
∂t

= γk∇2Sk(x), (37)

where ∇2 = ∂2/∂x2 + ∂2/∂y2.
3. Generate segmented image via thresholding Sk > 0.5.

The three steps iterate from (1) minimizing the reconstruction
error, (2) diffusion of the segmentation function to approxi-
mate piecewise constant values, and (3) a thresholding step
to generate binary segmentation functions. We provide an
example application and discuss computational complexity
issues in section IV.

F. Machine Learning Methods

Following the computation of AM-FM decompositions,
there is a need to select appropriate features for different
classification purposes (refer to Fig. 1). Compared to the
current emergence of Deep Learning methods, the approaches
described here are simple, easy to interpret, and surprisingly
effective (e.g., see [6]).

We begin with a brief summary of methods used for feature
extraction and selection. At the lowest level, we have the use
of histograms of the IA, IF magnitudes (|IA|, |IF|) and IF angle
(∠IF). In such approaches, strong features are associated with
high IA. A simple threshold on the IA is often used to reject
out of band noise while higher IF magnitudes are associated



1937-3333 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2020.2967273, IEEE Reviews
in Biomedical Engineering

10

with fine textures. For detecting and classifying regions of
interest refer to [6] and multiscale examples in [7]. Similarly,
in EMD analysis, we also have the use of multiple scales to
describe texture. Nunes et al. [47], [48], [52] studied texture
analysis based on BEMD using the instantaneous amplitude,
phase, isotropy and orientation to describe texture variations.

Despite the large number of generated AM-FM features,
AM-FM feature selection has only been done using traditional
statistical tests (e.g., using the Wilcoxon Rank sum test or
a t-test). Statistical tests have also been applied to specific
histogram bins of the distributions of AM and FM features.
Yet, the extracted IA and IF component features are of the
same size as the original input images. There is a clear need
for feature research in effective feature research using deep
learning methods (sec VI-C).

Following feature extraction and feature selection, we per-
form classification as shown in Fig. 1. AM-FM classifiers have
been limited to support vector machines (SVM), partial least
squares, often combined with K-means clustering methods.
Although implemented for 1D AM-FM signals, it is still
interesting to note the application of Independent Component
Analysis and SVM described in [53]. More recently, the
importance of using FM images as opposed to raw images
with deep learning methods has been demonstrated in [54].
Thus, there is a strong need for the development of medical
image analysis applications that use AM-FM features with
deep learning classifiers. We refer to section VI-C for rec-
ommendations.

IV. EXPERIMENTAL COMPARISONS

We will next provide comparisons between three differ-
ent AM-FM methods: (i) multiscale AM-FM (MS-AM-FM)
method using a Gabor filterbank (section III-C), (ii) the
MEEMD method (see section III-E2), and (iii) the Variational
Mode Decomposition (VMD) for the modified Lagrangian
of (35) (see section III-E3). The Matlab code is available
at https://ivpcl.unm.edu or http://www.ehealthlab.cs.ucy.ac.cy
(including datasets) for MS-AM-FM, where MEEMD was
taken from the Appendix of [45], and VMD from http://www.
math.montana.edu/dzosso/code.

To compare among the different methods, we consider a
three-component image corrupted by white Gaussian noise.
For the three components, refer to Figs. 6(a)-(d). The input
image contains three AM-FM components from three different
scales, corrupted by white Gaussian noise as given by:

I[k1, k2] = Comp1[ω1, σ1, α1, β1, x1,0, y1,0, k1, k2]

+ Comp2[ω2, σ2, α2, β2, x2,0, y2,0, k1, k2]

+ Comp3[ω3, σ3, α3, β3, x3,0, y3,0, k1, k2] + 5 · n[k1, k2]
(38)

where n[.] denotes zero-mean unit-variance white Gaussian
noise, and the AM-FM components use a Gaussian envelope

for the IA and quadratic FM as given by the parameter
summary of Table II with each component given by:

Compi[ωi, σi, αi, βi, xi,0, yi,0, k1, k2] =

exp

[
− 1

2σ2
i

((
k1 − xi,0
N/2

)2

+

(
k2 − yi,0
M/2

)2)]

· cos

[
αi

(
k1 − xi,0
N/2

)2

+ (k1 − xi,0)ωi,1

+ βi

(
k2 − yi,0
M/2

)2

+ (k2 − yi,0)ωi,2

]
. (39)

We also provide a summary of how we run each method. For
the multiscale method, we used the standard Gabor filterbank
with half-peak intersections with low IA rejection based on
component areas (e.g., see [16]). For MEEMD, we set the
ensemble number to 100 and set the number of modes to 3.
For the variational mode decomposition, the parameters were
set for texture decomposition as described in section 7.1 of
[51], and number of modes was set to 4. Beyond AM-FM
component component comparisons, refer to Fig. 2 for IA
and IF estimation, and the description of robust IA and IF
estimation in section III-C.

We provide a comparison of the estimated AM-FM com-
ponents among the different methods in Fig. 6. Based on
careful, close-up inspection of the results, we can see sig-
nificant mode mixing for MEEMD, reduced mode mixing
for the variational mode mixing, and no mode mixing for
the multiscale approach. Here, we note that the multiscale
approach uses low-IA rejection to reject mode interference.
Except for significant mode mixing in the DC component, the
variational mode decomposition provided smooth estimates.
The use of a multiscale Gabor filterbank performed very well
for the medium-scale and high-scale components, but suffered
for the lower-scales.

In terms of computational complexity, we refer to the
measured times in Table III. We note that the multiscale
method was the fastest, closely followed by the variational
mode decomposition. MEEMD was significantly slower. More
generally, the computational complexity associated with the
multi-scale method is dominated by the application of the
Gabor filterbank. Essentially, for the multi-scale method, com-
putational complexity is directly proportional to the number
of filters that are used, since each filter is convolved with the
extended analytic image. For the MEEMD and the variational
methods, computational complexity is directly proportional to
the number of components. To see this, for the variational
methods, note that coordinate descent is proportional to the
number of AM-FM components that need to be estimated.
Similarly, for MEEMD and the rest of the EMD methods, we
iterate over each component.

V. SELECTED APPLICATIONS IN MEDICAL IMAGE
ANALYSIS

Medical imaging applications of AM-FM analysis are pre-
sented that are briefly summarized in Table I. To keep the
number of considered applications manageable, we do not
consider the application of 1D AM-FM methods.

https://ivpcl.unm.edu
http://www.ehealthlab.cs.ucy.ac.cy
http://www.math.montana.edu/dzosso/code
http://www.math.montana.edu/dzosso/code
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(a) (b) (c) (d) (e)

MS-AM-FM

(f) (g) (h) (i)

MEEMD

(j) (k) (l) (m)

VMD

(n) (o) (p) (q)

Fig. 6. A comparison of AM-FM component estimation for different methods. Ground truth: (a) synthetic image, (b) additive noise, (c) low-scale component,
(d) medium-scale component. (e) high-scale component. MS-AM-FM results: (f) low-pass filter output, (g) low-scale component estimate with IA above the
median value, (h) medium-scale component estimate with IA above the 96-th percentile, (i) high-scale component estimate with IA above the 96-th percentile.
MEEMD results: (j) residual, (k) IMF3, (l) IMF2, (m) IMF1. VMD results: (n) DC, (o) 4th component estimate (for low-scale), (p) 3rd component estimate
(for medium-scale), (q) 2nd component estimate (for high-scale). Zoom in to visualize reconstruction noise and mode mixing.

TABLE II
PARAMETERS USED FOR SYNTHETIC AM-FM COMPONENT EXAMPLE FOR
SIMULATION. THE INPUT IMAGE IS 128× 128 WITH THREE COMPONENTS

AS GIVEN BY (38). THE EQUATION EXPLAINING HOW THE PARAMETERS
ARE USED BY EACH COMPONENT ARE GIVEN IN (39).

Component ωi,1 ωi,2 σi xi,0 yi,0 αi βi

i = 1 −π
√
2

32
π
√
2

32
8
9π

5N
8

3M
8

N
4

M
4

i = 2 −π
√
2

4
π
√
2

4
1
2π

5N
8

3M
4

N
4

M
4

i = 3 3π
√
2

8
3π

√
2

8
1
2π

N
4

M
2

N
4

M
4

A. Cardiovascular

1) Texture Analysis of the Intima and Media Layers of the
Common Carotid Artery: Early signs of atherosclerosis are
associated with texture changes of the different layers of the

carotid artery. Thus, the goal is to characterize texture changes
prior to the formation of atherosclerotic plaques.

In [55], the authors studied the use of AM-FM features
to analyze texture changes of the intima media complex, the

TABLE III
COMPUTATIONAL TIMES FOR EXTRACTING THE AM-FM COMPONENTS

FOR THE EXAMPLE DESCRIBED IN TABLE II. THE EXAMPLES WERE
IMPLEMENTED USING MATLAB VERSION 9.5.0 (R2018B) ON A

MACBOOK PRO WITH A 2.8 GHZ INTEL I7-2640M PROCESSOR (LATE
2011 MODEL) AND 16GB RAM.

Method Time (s)
MS-AM-FM 2.59
MEEMD 33.86
VMD 4.15
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TABLE IV
APPLICATIONS OF AM-FM MODELS IN MEDICAL IMAGING

Reference AM-FM Dataset Features Results
Method AUC Sen Spe Acc

Cardiovascular
Texture Analysis of Common Carotid Artery [55] MSAIm, DF 100 Im IA,|IF|,∠IF Hist NA NA NA NA
Atherosclerotic Carotid Plaque Classification [56] BEMD 1353 S, 420 AS Entropy IMFs NA 97% 83% 91%
Microvascular Blood Flow [46] MCEEMDAN 30 Im NA NA NA NA NA
Myocardial Infraction Quantification [57] MEEMD, MS 82 P Phase 0.754 NA NA NA

Nervous System
Brain

Multiple Sclerosis Texture Analysis [58] MSAIm, DF 38 P 20 HC IA,|IF|,∠IF 0.76 71% 95% 86%
Multiple Sclerosis Prediction [59] MSAIm 20 P Morph, Stat NA NA NA 75%–97%
Alzheimer’s Disease PET Image Analysis [60] MEEMD 100 P, 100 HC IMFs NA NA NA 95%
Parkinson Disease DaTSCAN SPECT Image Analysis [61] MEEMD 41 P 39 HC IMFs 0.95 95% 94% 95%

Special Senses (Eye)
Diabetic Retinopathy Lesion Detection [7] MSAIm, SF 108 P, 70 HC IA,|IF|, ∠IF Hist 0.84 92% 54% 92%
Diabetic Retinopathy Lesion Detection [62] MSAIm, SF 437 AN, 136 N IA,|IF|, ∠IF Hist 0.89 97% 50% NA
Age-Related Macula Degeneration Lesion Detection [62] MSAIm, SF 248 AN, 144 N IA,|IF|, ∠IF Hist 0.84 94% 50% NA
Macula Exudates Detection [63] MDAIm, SF 1052 Im IA 0.96 73% 99% 92%
Optic Disk Neovascularization Classification [64] MDAIm, SF 300 Im IA, |IF|, ∠IF 0.93 78% 94% 88%
Retinal Image Hemorrhage Detection [65] VMD 108 Im Stat NA 100% 100% 100%
Glaucoma Detection [66] VMD 244 Im, 244 P Entropy, FD NA 94% 97% 95%

Musculoskeletal
Electron Microscopy Image Segmentation [6] AIm, GF 26 Im IA, IF NA NA NA 84%

Respiration
Pneumoconiosis [67] MSAIm 22 Im IA,|IF| Hist 1 NA NA NA

Gynecological Cancer
Mammographic Density Classification [68] MDAIm, GF [69] Database IA Hist NA NA NA 80%
Breast Architectural Distortion Detection [70] BEMD 187 P, 2191 HC fractals 0.95 NA NA NA
Classification of Histopathological Breast Cancer Images
[71] VMD 5429 M,

2480 B
Zernike
moments

NA 87% 85% 87%

Endometrium Hysteroscopy Imaging [72] MSAIm 50 AN, 50 N IA,IF,IF NA 75% 90% 83%

Abdomen
Focal Liver Ultrasonic Lesion Classification [73] BEMD 78 N,26 B,36 M DCT of IMFs NA 91% 97% 93%
Hepatic Fibrosis Microscopic Classification [74] BEMD 15 N, 45 AN IMFs, Stat NA NA NA 98%

DF:Dyadic Filterbank, GF: Gabor Filterbank, SF: Separable Filterbank, EO: Energy Operator, TKEO: Teager Kaiser Energy Operator, AIm: Analytic Image, MSAIm: Multiscale
Analytic Image, MS: Monogenic Signal, ∠IF: IF Angle, HWF: Hilbert Weighted Frequency, Stat: Statistical, Morph: Morphological, Hist: Histograms,FD: Fractals, Im: Images,
P: Patients, HC: Healthy Control,S: Symptomatic,AS: Asymptomatic, AN: Abnormal, N: Normal, B: Benign, M: Malignant, AUC: Area Under the Curve,

media layer and the intima layer of the common carotid
artery. Here, the authors used multiscale AM-FM analysis and
extracted histograms of the IA, IP, and IF for the low, medium,
and high scales from each ROI (e.g., medial layer, etc). Based
on 100 B-mode ultrasound images, for features extracted from
the <50 and >60 age groups, the study found significant
texture differences: (i) in the low-scale and medium-scale IA
and high-scale IF extracted from the intima media complex,
and (ii) the low-scale IA extracted from the intima layer.
Furthermore, for the IA extracted from the media layer, the
study found significant differences among men and women
for all age groups (<50, 50-60, >60). The study showed that
AM-FM features provided complimentary information that
goes beyond traditional texture features such as the gray-scale
median, contrast, and coarseness.

2) Atherosclerotic Carotid Plaque Classification: In [56],
the authors presented an early detection framework for pre-

dicting carotid plaque deposition. The authors used the BEMD
to extract entropy based features from the IMFs from a total
of 1353 symptomatic and 420 asymptomatic carotid plaque
ultrasound images. To improve classification accuracy and
reduce bias, the dataset was balanced with adaptive synthetic
sampling. An SVM classifier trained on 14 selected features
gave a classification accuracy of 91%, sensitivity of 97%, and
specificity of 83.2%.

3) Microvascular Blood Flow: Microvascular blood flow
alternations were identified in several disease processes where
numerous studies tried to evaluate the clinical implications of
these changes [75]. Laser Speckle Contrast Imaging (LSCI) is
a microvascular blood flow modality based on the phenomenon
of laser light backscattering that forms a random interference
pattern (the speckle pattern). Humeau et al. [76] [46] intro-
duced the analysis of LSCI using EMD and its variations to
obtain the IMFs. A comparative study between Laser Speckle
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Contrast Imaging and Laser Doppler Flowmetry was presented
in [76], using EEMD, and Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise. Furthermore, their
work was extended to MCEEMDAN [46] that resulted in the
extraction of different patterns in different situations that need
to be further evaluated.

4) Myocardial Infarction Quantification: High risk cardio-
vascular mortality patients can be identified prior to myocar-
dial infraction by Gadolinium Enhancement cardiovascular
magnetic resonance imaging. In [57], the authors presented a
framework for myocardial infarction quantification consisting
of image decomposition into intrinsic modes using multi-
dimensional Ensemble Empirical Mode Decomposition, fol-
lowed by the extraction of monogenic phase on the combined
dominant modes. On the extracted phase, the authors used
multilevel Otsu thresholding to quantify image regions into
healthy, gray zone, and infarct core regions of the myocardium.
Using a database of 82 patients, the authors obtained an AUC
of 0.754 for total infarct, an AUC of 0.709 for infarct core,
and an AUC of 0.845 for gray zone.

B. Nervous System
1) Multiple Sclerosis (MS): MS is a disease of the central

nervous system that disrupts the flow of information within the
brain and between the brain and the body that often develops
disability. At this time, there are no symptoms, physical
findings or laboratory tests that can, by themselves, determine
if a person has MS. Magnetic Resonance Imaging (MRI) is
used to provide information about disease burden and lesion
evolution. The difficulty appears into white matter areas that
could be possibly classified into the following three categories:
Normal White Matter, Normal Appearing White Matter and
MS lesions. The discrimination between these three tissue
types cannot be based on their appearances. Various image
analysis techniques were used to quantify MRI abnormalities
in order to capture diagnostically significant image features for
disease activity monitoring and progression. The Expanded
Disability Status Scale (EDSS) is a clinical index scaling
for the assessment of disease progression. In [58] Loizou
et al. used multiscale AM-FM representation with Hilbert
based demodulation with components extracted by a dyadic
filterbank. Analysis was based on a multiscale filterbank. Low,
medium and high frequency scale based feature combinations
were investigated as follows: 1) IA; 2) |IF|; 3) IA; |IF|; 4) |IF|
∠ IF; and 5) IA |IF| ∠ IF.

T2-weighted transverse MR images were recorded (with
repeated scans with an interval of 6-12 months) from 38
patients and 20 healthy volunteers. Disability was quantified
after 2 years of the initial diagnosis as follows: 23 early cases
(EDSS ≤ 2) and 15 advance cases (EDSS > 2) of the disease
respectively. Significant statistical differences were identified
in the AM-FM features between NWM, NAWM and lesions
utilizing the Mann-Whitney test. Furthermore, patients were
classified using the SVM classifier into two classes (those
with EDSS ≤ 2 and those with EDSS > 2) achieving a
correct classifications score of 86%. The results indicated that
AM-FM features provided useful information for lesion load
characterization and disability progression in MS.

MS progression detection was proposed by Washimkar and
Chede [59]. They proposed brain MRI AM-FM segmentation
followed by saliency map mapping and fuzzy c means clus-
tering. Then, an adaptive iterative threshold based algorithm
for lesion detection was applied. Morphological, local binary
pattern and statistical lesion features were extracted, which
were classified with the K nearest neighbor (K-NN) classifier.
The accuracy of the classifier for disease detection for the first
week of occurrence gave the best results and ranged from 75
to 97%.

2) Alzheimer’s Disease (AD): AD is a brain disorder that
in most people appears in the mid-60s, characterized of
irreversible, progressive loss of memory and thinking skills.
Early diagnosis is important for patient medical treatment to
slow or delay the symptoms of disease. Positron Emission
Tomography (PET) and Single Photon Emission Computed
Tomography (SPECT) are commonly used in AD diagnosis.

An application based on EMD for PET image analysis in
the classification of normal, mild cognitive impairment (MCI)
or AD subjects was proposed by Neubauer et al. [60]. In this
work, normalized data were processed using MEEMD where
single or a combination of Bidimensional Intrinsic Mode
Functions were used as feature sets for the classification with
SVM or Random Forest decision trees. Functional PET images
of 100 AD or MCI subjects and 100 normal control (NC)
subjects, were used for the classification of subjects suffering
from AD or MCI against the NC group. 100 AD/MCI and
100 NC images, each of size 79x95 pixels, were used for the
classification of subjects suffering from AD or MCI against
a NC group with authors asserting classification rates in the
range 90% to 95%.

3) Parkinsonian Syndrome (PS): Radiopharmaceutical
(Ioflupane) brain SPECT imaging is used for PS diagnosis.
Rojas et al. [61] provided an EMD-based approach for PS
classification based on SPECT images. The method was eval-
uated using 80 images, yielding up to 95% accuracy.

C. Special Senses (Eye)

1) Diabetic retinopathy: Diabetic retinopathy (DR) affects
blood vessels in the retina and is the most common cause
of vision loss among people with diabetes. Changes to the
blood vessels include microaneurysms, exudates, hemorrhages
and neovascularization at different levels or grades of the
disease. We will next provide a summary of the application of
multiscale AM-FM methods to diabetic retinopathy [7], [62]–
[64].

In [7], the authors showed that AM-FM features can be used
to differentiate among microaneurysms, exudates, neovascular-
ization on the retina, hemorrhages, normal retinal background,
and normal vessels patterns (also see earlier work in [77]). The
method include the use of robust estimation methods detailed
in section III-C. For the specific application, the authors con-
sidered four scales implemented using a separable filterbank
and nine combinations of scales for feature extraction. Feature
extraction consisted of 27 cumulative distribution functions
(CDFs), three for each of the nine CoS for the IA, |IF|
and ∠IF. As shown in the paper, the CDFs exhibited strong
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differences between different pairs of abnormal structures.
For classification over the MESSIDOR database, the authors
reported classification accuracies of 97% for Risk 3 (70 test
images), 82% for Risk 2 (18 test images), 89% for Risk
1 (30 test images), overall accuracy of 92%. Furthermore,
the paper reported an AUC of 0.84 with the recommended
sensitivity/specificity pair of 92%/ 54% for Risks 3, 2, and 1
versus Risk 0.

In [63], Agurto et al. presented a multi-scale approach for
detecting exudates regions in the macula region of the retina.
The approach is based on thresholding IA components from
multiple scales to generate candidate exudate regions. From
each candidate region, color, shape and texture features are
extracted and are fed to a partial least squares classification
method. The approach yielded an AUC of 0.96 for the com-
bination of two datasets of 400 and 652 images.

In [64], the authors developed a new method to detect
abnormal vasculature in the optic disk. The approach uses
an adaptive segmentation approach to select candidate vas-
culature regions. From each candidate region, the method
extracts multiscale AM-FM features from twelve combinations
of frequency bands, morphological granulometry and fractal
dimension features. To test the approach, ROIs over the
segmented vessels were classified as normal and abnormal.
For 300 images (100 neovascularization and 200 normal), a
linear SVN classifier gave a classification accuracy of 88%.

Lahmiri and Shmuel [65] proposed an automated system
to detect hemorrhages in retinal images based on VMD,
texture statistical descriptors, and machine learning classifi-
cation. Initially, the retinal image is decomposed into a set of
variational modes. Subsequently, a set of four statistical texture
descriptors from the first variational mode, that represents
the high frequency components, are used as features for five
different classifiers in order to characterize retinal texture. For
hemorrhage detection, the best classification performance of
100% accuracy was obtained with and SVM classifier.

2) Age-Related Macula Degeneration: Age-Related Mac-
ula Degeneration (AMD) refers to the decline of macula
functions that affect the central vision system. AMD is the
leading cause of significant visual acuity loss in people over
the age of 50 in developed countries. The classification of
pathological structures such as drusen (AMD characteristic
deposits) is crucial for early diagnosis.

In [62], the authors described an AM-FM based system for
detecting DR and AMD in digital fundus images (also see
earlier work in [78]). The approach was based on the use of
histograms of IA,|IF| and ∠IF and statistical moments as input
features to a K-means clustering method followed by the use
of a partial least squares classifier. The method was tested
on 2247 digital photographs from 822 patients and reported
an AUC of 0.89 for detecting DR with sensitivity/specificity
of 97%/50% and an AUC of 0.84 for AMD with sensitiv-
ity/specificity of 94%/50% respectively.

3) Glaucoma detection: Glaucoma is a complex disease in
which damage to the optic nerve leads to progressive, irre-
versible vision loss. An automated glaucoma diagnosis system
presented by Maheshwari et al. [66] using Variational Mode
Decomposition. Various entropy and fractal features were

extracted in order to classify 244 normal and 244 glaucoma
color fundus images. The least squares support vector machine
was used for classification and the best accuracy achieved was
at 95% with sensitivity/specificity of 94%/97%.

D. Musculoskeletal

Myopathies such as congenital, vacuolar, and metabolic
often require the visualization of the extent of the disease via
the study of electron microscopy muscle biopsy images. In the
case of myopathy, abnormal structures disturb the very regular
and repetitive sarcomere pattern of myofibers. Pattichis et al.
[6] proposed an AM-FM based electron microscopy image
segmentation system of skeletal muscle for the recognition
of normal and abnormal regions. Analysis was based on
the analytic image demodulation using Gabor filterbanks and
DCA. The IA and IF estimates were used for driving the
segmentation procedure for differentiating between normal
and abnormal muscle structures. In this study 26 electron
micrographs from different myopathies were used with a
recognition accuracy of 75%-84% as compared to a human
expert.

E. Respiration System

Pneumoconiosis is a disease caused by inhaled dust de-
posited deep in the lungs. The disease is commonly diagnosed
and monitored by chest radiography imaging. Murray et al.
[67] presented a CAD system for analyzing chest radiographs
using multiscale AM-FM representations where a dyadic filter-
bank, variable spacing, and a local linear phase method were
used for estimating the IA and IF magnitude histograms. The
proposed framework was evaluated on a rather small database
of 22 images giving an area under the receiver operator
characteristics curve equal to 1.0.

F. Gynecological

The second most commonly diagnosed cancer, and the most
common cancer in women in the world is breast cancer.
Mammography is a specialized medical imaging modality
for breast imaging using low-energy X-rays. Mammographic
breast density is recognized as the strongest predictor to
diagnose cancer. Mammograms are classified into one of four
density classes based on the Breast Imaging Reporting and
Data System (BI-RADS) scale.

On the other hand, a large number of breast cancer cases
in women with dense breasts cannot be diagnosed based
on mammography. Constantinou et al. [68] and [79] applied
multiscale AM-FM image analysis using Hilbert based demod-
ulation using Gabor filterbanks. The normalized histogram of
the maximum IA across all frequencies for each scale was
used to characterize the breast density for each mammogram.
The histograms were concatenated to characterize each image
and classification into the BI-RADS scale was achieved by
comparing the corresponding distribution to the rest using K-
NN and Euclidean distance. The proposed methodology was
evaluated on 206 mammograms with no abnormalities from
the Medical Image Analysis Society mammogram database.
The achieved overall correct classifications score was 80%.
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Early detection of breast cancer is related with character-
ization of architectural distortion in mammograms. In [70],
the authors used a combination of fractal analysis and the
bidimensional empirical mode decomposition to detect archi-
tectural distortions. Based on a dataset of 187 architectural dis-
tortion regions extracted from 2191 normal breast parenchyma
regions, the method achieved an AUC of 0.95.

In [71], the authors report a classification method to detect
breast carcinoma. The proposed approach uses a combination
of features that include multilevel iterative variational mode
decomposition, Zernike moments, fractal dimension, and en-
tropy features extracted from the VMD components. Based on
a dataset of 7,909 breast cancer histological images collected
from 82 patients, the authors report classification accuracy rate
of 89.61% based on three-fold cross validation.

The second mortality rate in the female popula-
tion is connected with gynecological cancer. In laparo-
scopic/hysteroscopic imaging, the physician guides the tele-
scope inside the uterine or abdominal cavity investigating the
internal anatomy, in search of suspicious, cancerous lesions.
During the exam, the experience of the physician plays a
significant role in identifying suspicious ROIs, where in some
cases, important ROIs might be ignored and crucial informa-
tion neglected.

Constantinou et al. [72] introduced an adaptive multiscale
AM-FM texture analysis using optimal filterbank design to
classify normal versus abnormal ROIs of hysteroscopy videos
recorded from the endometrium. AM-FM analysis was carried
out using Hilbert based demodulation and Gabor filterbanks.
The basic concept of this work was the design of a problem
- matched filterbank that will facilitate computing the most
discriminatory AM-FM feature sets. For each filterbank, the
IA, IP and IF estimates were extracted from different scales.
Then for each AM-FM component the following texture fea-
tures were extracted for each ROI: the entropy, median value,
and Inter-Quartile Range. The AM-FM feature sets were input
into an SVM classifier trained with 50 cases and evaluated with
another 50 cases. The highest correct classifications score was
83%.

G. Abdomen

Liver cancer diagnosis using ultrasound imaging is a non-
invasive and cheap method but less accurate than surgical
biopsy. Acharya et al. [73] proposed a computer-aided diagno-
sis system in order to support specialists in focal liver lesion
classification based on the Radon transform and Bidirectional
Empirical Mode Decomposition. Statistically significant fea-
tures were extracted from the DCT coefficients of IMFs. A
dataset of 78 normal, 26 benign and 36 malignant images were
evaluated where the best accuracy, sensitivity, and specificity
obtained were 93%, 91% and 97%, respectively.

Schistosomiasis is a chronic liver diseases leading to hepatic
fibrosis, a serious cause of liver failure. Liver histopathology
information is essential for fibrosis monitoring and treatment.
Ashout et al. [74] proposed a new method for microscopy
liver tissue image assessment using Empirical Mode Decom-
position combined with statistical features. The dataset used

was obtained from animal tissue and consisted of 15 cases for
each of 3 classes (corresponding to level 1 to 3 of fibrosis) and
normal. The best classification accuracy achieved was 98%.

H. Other

In this section, we summarize additional AM-FM applica-
tions that are not associated with specific 2D methods applied
to different diseases. In [80], the authors investigated the use
of AM-FM techniques to detect early stages of malignancies
as they appear in optical coherence tomography (OCT). The
authors used DCA and the methods described in (12)-(14) to
extract the IA, the IP, and the IF to detect scatterers with
different size characteristics. The promise of the approach
lies in its potential to detect disease early with information
extracted from scatterers that remain below the resolution of
current OCT systems.

In [81], the authors used a variety of AM-FM techniques to
establish the validity of visual and auditory saliency models for
processing fMRI videos. For visual silency, the authors used
400 3D Gabor filters for the luminance and color streams to
extract motion information in different scales and directions.
For the auditory model, they used AM-FM demodulation
based on the Teager-Kaiser operator applied over a Gabor
filterbank. The approach led to validation of the perceptual
relevance of the computational model.

We also list imaging applications that use 1D AM-FM
techniques. These applications are distinct from the devel-
opment of 2D or 3D AM-FM techniques that have been
the focus of this paper. In [82], the authors used 1D EMD
from resting-fMRI images to study the frequency characteris-
tics of regional homogeneity. In [83], the authors used the
1D CEEMD in fMRI to establish different frequencies of
oscillations for patients with depressed Parkinson’s disease,
non-depressed Parkinson’s disease, versus healthy controls.
In [84], the authors applied EMD to resting-fMRI images
to establish changes in dynamic functional connectivity in
early Parkinson’s disease. In [85], the authors used CEEMD
to automatically decompose the BOLD resting-state fMRI for
Mild Cognitive Impairment identification. In [86], the authors
used EMD in resting-state fMRI to study their relevance with
normal aging In [87], the authors used multivariate Empirical
Mode Decomposition to extract task-dependent hemodynamic
responses in olfactory-induced fMRI.

VI. EMERGING TRENDS AND POSSIBLE FUTURE
DIRECTIONS

We begin with a summary of emerging AM-FM methods
and applications in section VI-A. We then provide a summary
of deep learning methods and discuss connections to the
use of AM-FM representations in section VI-B. We provide
recommendations for combining deep learning methods with
AM-FM methods in section VI-C.

A. Emerging AM-FM Methods and Applications

Interest in medical imaging applications of AM-FM models
and methods will surely grow as the methods have matured
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and several new applications are considered (e.g., see video
applications in [88], [89]).

New methods are also being actively developed. As an
example, a general purpose segmentation method based on
modulation features, generative models, and weighted curve
evolution has been described in [32]. The approach consisted
of the use of a regularized demodulation algorithm to provide
better channel selection for DCA, followed by the use of a
generative model based on the DCA output, and the use of
a weighted curve evolution to provide excellent segmentation
results on the Berkeley Segmentation dataset. Such methods
have not been applied to medical imaging yet.

We also have the development of more recent AM-FM
methods. For example, iterative filter methods were developed
in [90], multi-component AM-FM demodulation in [91], and
a generalized mathematical framework for time-frequency
analysis in [92]. Additional applications include multi-source
image fusion decomposition [93], sparse coding [94], and the
use of a 2D Fourier decomposition method for multicompo-
nent AM–FM image analysis [95]. In [96], the authors used
an elastic net method to provide a sparse AM-FM image
representation that accurately reconstruct the input images.

We also have the development of recent mathematical
models that need to be further applied to medical images.
First, we expect more applications of the variational mode
decomposition methods that have been described in section
III-E3 and demonstrated in section IV. Second, we have the
Synchrosqueezed Wavelet transform that provides a method
to sharpen the time-frequency spread of each EMD harmonic
[97]. For images, the synchrosqueezed wave packet transform
extended the approach for 2D mode decomposition [98],
applied to the curvelet transform in [99], and the monogenic
signal in [100]. Yet, we are not aware of any applications of
the synchrosqueezed Wavelet transform to medical images.

We also provide a summary of applications of the syn-
chrosqueezed transform. In [101], the authors discussed an
application of the synchrosqueezed transform for separating
two harmonic functions with different frequencies and ampli-
tudes. An application for separating multi-component AM-FM
signals can be found in [102]. An application to determine
the painter in different paintings was considered in [103].
An application of 2D synchrosqueezed transforms to analyze
atomic crystal images was considered in [104].

B. Deep Learning and Convolutional Neural Networks
The recent emergence of deep learning methods has enabled

training and testing complex classifiers on large datasets. In
terms of training complex Neural Network systems, the initial
breakthrough was reported in recognizing handwritten charac-
ters in [105]. Significant progress in the development of deep
learning methods is often reported in terms of performance
on the ImageNet database of 1,000 categories of 1.2 million
(later 1.3M) images [106]. As a brief summary, we have
that: (i) AlexNet achieved a top-5 test error of 15.3% with
60M parameters in 2012 [107], followed by (ii) the Inception
architecture that reduced the same error to 5.6% [108] in 2016,
and (iii) the DenseNet-201 architecture that claimed a 6.34%
accuracy with about 20M parameters in 2017 [109].

Deep learning methods have also yielded effective segmen-
tation methods. We have the development of the Fully Con-
volutional Networks [110], [111] based on transfer learning
from ImageNet classifier networks. We then have the SegNet
architectures for general image segmentation methods that
is based on the use of auto-encoders [112], and the U-net
architecture for biomedical image segmentation [113].

For processing medical images and videos, the majority
of the deep learning architectures rely heavily on the use
convolutional layers, max pooling layers, skip connections,
and flattening with fully connected SoftMax layer for the final
classification layer. Unlike the use of pre-defined filterbanks
for AM-FM analysis methods, deep learning methods need
to learn the convolution kernels associated with the different
convolutional layers. On the other hand, it is important to note
that the advantages of using Gabor filterbanks with neural-
networks has been known for a long time (e.g., see [114]).
The approach can also be extended to 3D CNN methods using
3D kernels (e.g., 3x3x3). While the individual convolutional
layers tend to be very small (e.g., mostly 3x3, 5x5), the large
number of interconnections leads to the need to learn several
millions of parameters.

Unfortunately, the use of millions of parameters makes CNN
hard to interpret and difficult to train. More specifically, each
CNN output is input to an activation function (e.g., sigmoid)
and then further processed by additional layers. Each convo-
lution layer is actually a biased cross-correlation layer that is
maximized when the input is a positive multiple of the cross-
correlation kernel. Then, following each convolution layer, the
use of max pooling selects the output that is closest to the
cross-correlation kernel. It is interesting to note the analogy
to the use of the maximum instantaneous amplitude to select
the output of each AM-FM channel. In other words, unlike
AM-FM methods, convolutional layers effectively select the
maximum channel output directly. Beyond the first convolution
layer, it is hard to provide meaningful interpretations. For
small networks, it is possible to examine the responses of each
filter to specific inputs as in the online examples provided
in [115] (also see [116]). Undoubtedly, training on large
datasets to learn millions of parameters is computationally
extremely demanding. Instead, through transfer-learning, new
systems can limit training to new applications by re-training
existing systems trained on large databases such as ImageNet.
As discussed in [117], transfer-learning, even from different
modalities, can lead to more robust and improved training than
training from scratch on a limited medical database.

Despite the lack of interpretability, CNN-based methods
have evolved to address a variety of medical image and video
analysis problems. We refer to [118] for a general review of
the applications of deep learning methods. We also refer to
[1] for a recent survey on the applications of deep learning in
medical imaging.

C. Recommendations for Future Work in Deep Learning and
AM-FM Methods

We expect to see strong growth in the use of AM-FM
representations with deep learning methods. We provide a
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summary of our recommendations for combining AM-FM
methods with deep learning in terms of classification, feature
selection, filterbank design, and transfer learning for medical
image analysis applications.

As mentioned earlier, deep learning classifiers are yet to be
used with AM-FM features. Clearly, the advantage of using
AM-FM features versus raw images comes from the fact that
AM-FM features are interpretable. Given the small number
of AM-FM features (e.g., histograms of IA and IF) that have
already yielded important medical image analysis applications,
we expect a significant reduction in the number of parameters
that will need to be learned. As an example, [54] showed that
FM images can use simple neural network architectures to
detect faces, while the same architectures performed extremely
poorly on the raw images.

There is a large number of AM-FM features that can
benefit from the use of Deep Learning Methods for feature
selection. To recognize the problem, we note that an N ×M
image decomposed into K components will generate KNM
instantaneous amplitude images and 2KNM instantaneous
frequency components along the x and y directions. Hence,
we have 3KNM spatially-distributed AM-FM features that
can benefit from the combination of classification maps and
Convolutional Neural Nets as described in [119]. To explain
the approach, we assume the use of global average pooling
(GAP) over the 3KNM AM-FM feature maps (averages over
each map) that are input to a fully-connected softmax layer.
The classification map is defined as the weighted average of
the feature maps where the weights come from the weights
of the GAP layer associated with the classification category.
Thus, the classification maps allow us to visualize the AM-
FM features that are used for the classification. In turn, this
approach can support future research in interpretable AM-FM
feature selection where the dominating features can be used
for representing the underlying textures.

Interpretable filterbank design can also benefit from the use
of classification maps. As an example, a clustering of the most
significant instantaneous frequency vectors, extracted from the
class action maps, can be used to design filters that can provide
strong coverage of the 2D frequency spectrum that contain
them.

Assuming pre-training of AM-FM features with deep mod-
els over large databases, future medical imaging applications
can benefit from transfer learning. Just like Convolutional
Neural Networks, AM-FM filterbanks can be applied to any
input image size. Then, future medical imaging applications
will simply need to replace and retrain the top layers for
specific applications.

VII. CONCLUSION

Over the years, substantial progress has been made on the
development of AM-FM demodulation methods. Several of
the most dominant methods have been summarized in section
III. While AM-FM demodulation methods are still of interest,
we now have robust methods that have proven effective in
many applications. Yet, there are clearly many important new
methods that have not been applied to medical image or
medical video analysis.

In general, there is a need to consider medical image
analysis using a multitude of different AM-FM features. To
recognize this need, note that AM-FM models and transforms
can generate a large number of AM-FM components. Yet,
in terms of applications, the majority of the applications are
concerned with the use of a single AM-FM component. More
recently, there has been great interest in the use of multiscale
AM-FM models that extract components from each scale.
Using multiscale representations, the approach generates AM-
FM components and features from each scale. Yet, even when
using multiscale methods, the majority of the applications
only consider histograms of the IF, the IA, the IF magnitude.
The full 2D AM-FM components have not been seriously
considered.

Future research could consider the use of convolutional
neural networks with AM-FM components and features. In
such applications, the goal would be to set the input channels
to the individual AM-FM components that will be input to a
CNN with a significantly reduced number of parameters. In
other words, the AM-FM components and features will act as
the low-level features that are typically extracted through a
large-scale training efforts. The use of AM-FM components
and features will provide much better interpretability with
significantly less-complex neural network architectures.
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“Robust head detection in collaborative learning environments using
am-fm representations,” in 2018 IEEE Southwest Symposium on Image
Analysis and Interpretation (SSIAI), April 2018, pp. 1–4.

[89] W. Shi, M. Pattichis, S. Celedon-Pattichis, and C. LopezLeiva, “Dy-
namic group interactions in collaborative learning videos,” in 2018
Asilomar Conference on Signals, Systems and Computers. IEEE, Nov
2018, pp. 1528–1531.

[90] A. Cicone and H. Zhou, “Multidimensional iterative filtering method
for the decomposition of high–dimensional non–stationary signals,”
Numerical Mathematics: Theory, Methods and Applications, vol. 10,
no. 2, pp. 278–298, 2017.

[91] A. K. George and P. Sumathi, “Pre-filtered phase-locking scheme for
multi-component am–fm signal decomposition,” Circuits, Systems, and
Signal Processing, vol. 37, no. 2, pp. 752–769, 2018.

[92] S. Sandoval and P. L. De Leon, “The instantaneous spectrum: A general
framework for time-frequency analysis,” IEEE Transactions on Signal
Processing, vol. 66, no. 21, pp. 5679–5693, 2018.

[93] W. Huijuan, J. Yong, and M. Xingmin, “Fast bi-dimensional empirical
mode based multisource image fusion decomposition,” in 2019 28th
Wireless and Optical Communications Conference (WOCC), May 2019,
pp. 1–4.

[94] E. H. S. Diop and K. Skretting, “Frequency separation method based on
sparse coding,” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp.
5192–5196.

[95] P. Singh and S. D. Joshi, “Some Studies on Multidimensional Fourier
Theory for Hilbert Transform, Analytic Signal and AM–FM Represen-
tation,” Circuits, Systems, and Signal Processing, pp. 1–28, 2019.

[96] I. Constantinou, M. S. Pattichis, and C. S. Pattichis, “Multiscale AM-
FM image reconstructions based on elastic net regression and gabor
filterbanks,” in 2013 Asilomar Conference on Signals, Systems and
Computers. IEEE, Nov 2013, pp. 1985–1989.

[97] I. Daubechies, J. Lu, and H. T. Wu, “Synchrosqueezed wavelet
transforms: An empirical mode decomposition-like tool,” Applied and



1937-3333 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2020.2967273, IEEE Reviews
in Biomedical Engineering

20

Computational Harmonic Analysis, vol. 30, no. 2, pp. 243–261, Mar
2011.

[98] H. Yang and L. Ying, “Synchrosqueezed wave packet transform for
2d mode decomposition,” SIAM Journal on Imaging Sciences, vol. 6,
no. 4, pp. 1979–2009, 2013.

[99] ——, “Synchrosqueezed curvelet transform for 2d mode decomposi-
tion,” arXiv preprint arXiv:1310.6079, 2013.

[100] M. Clausel, T. Oberlin, and V. Perrier, “The monogenic syn-
chrosqueezed wavelet transform: a tool for the decomposi-
tion/demodulation of am–fm images,” Applied and Computational
Harmonic Analysis, vol. 39, no. 3, pp. 450–486, 2015.

[101] H. T. Wu, P. Flandrin, and I. Daubechies, “One or two frequencies?
The synchrosqueezing answers,” Advances in Adaptive Data Analysis,
vol. 03, no. 01n02, pp. 29–39, Apr 2011.

[102] S. Meignen, T. Oberlin, and S. McLaughlin, “A new algorithm for
multicomponent signals analysis based on SynchroSqueezing: With an
application to signal sampling and denoising,” IEEE Transactions on
Signal Processing, vol. 60, no. 11, pp. 5787–5798, Nov 2012.

[103] H. Yang, J. Lu, W. P. Brown, I. Daubechies, and L. Ying, “Quantitative
canvas weave analysis using 2-d synchrosqueezed transforms: Applica-
tion of time-frequency analysis to art investigation,” Signal Processing
Magazine, IEEE, 2015.

[104] H. Yang, J. Lu, and L. Ying, “Crystal image analysis using 2d syn-
chrosqueezed transforms,” Multiscale Modeling & Simulation, vol. 13,
no. 4, pp. 1542–1572, 2015.

[105] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[106] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[107] I. Sutskever, G. E. Hinton, and A. Krizhevsky, “Imagenet classification
with deep convolutional neural networks,” Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[108] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[109] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[110] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[111] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” arXiv preprint arXiv:1605.06211, 2016.

[112] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for robust semantic pixel-wise
labelling,” arXiv preprint arXiv:1505.07293, 2015.

[113] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[114] J. G. Daugman, “Complete discrete 2-d gabor transforms by neural
networks for image analysis and compression,” IEEE Transactions on
acoustics, speech, and signal processing, vol. 36, no. 7, pp. 1169–1179,
1988.

[115] Y. LeCun, “Lenet-5, convolutional neural networks,” http://yann.lecun.
com/exdb/lenet/, accessed: 2019-06-13.

[116] A. E. U. Cerna, M. Pattichis, D. P. vanMaanen, L. Jing, A. A. Patel,
J. V. Stough, C. M. Haggerty, and B. K. Fornwalt, “Interpretable neural
networks for predicting mortality risk using multi-modal electronic
health records,” arXiv preprint arXiv:1901.08125, 2019.

[117] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall,
M. B. Gotway, and J. Liang, “Convolutional neural networks for med-
ical image analysis: Full training or fine tuning?” IEEE transactions
on medical imaging, vol. 35, no. 5, pp. 1299–1312, 2016.

[118] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015.

[119] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 2921–2929.

Kyriacos P. Constantinou received his B.Sc. from
the Hellenic Army Academy, Athens, Greece, in
2002 and the M.Sc. degree in Computer Science
from the University of Cyprus, Nicosia, Cyprus in
2012. He is currently working towards the Ph.D.
degree at the Department of Computer Science,
University of Cyprus.

His research interests include medical image and
video analysis, and computer vision.

Ioannis P. Constantinou received his Dipl-Ing.
Degree in Electrical Engineering and Computer En-
gineering from National Technical University of
Athens, Greece, his MSc in Biomedical Engineering
from the Postgraduate Program of the University of
Patras and National Technical University of Athens,
and his PhD degree from the Department Computer
Science of the University of Cyprus in the area of
image analysis/computer vision.

Dr. Constantinou has been involved in several
EU-funded and RPF-funded research projects related

to robotics, telemedicine, e-learning, Internet of Things, advance image
processing and analysis, biological procedure modelling and simulation and
e-health. He contributed to more than 20 papers in scientific conference and
journals in the area of robotics, medical image analysis, computer vision and
ehealth.

Constantinos S. Pattichis (S’88-M’88-SM’99-
F’18) is currently Professor with the Department
of Computer Science of the University of Cyprus.
His research interests include ehealth and mhealth,
medical imaging, biosignal analysis, life sciences
informatics, and intelligent systems. He has been
involved in numerous projects in these areas funded
by EU, the National Research Foundation of Cyprus,
the INTERREG and other bodies. He is a Fel-
low of IEEE, Fellow of IET, Fellow of the Euro-
pean Alliance of Medical and Biolological Sciences

(EAAMBES) and Fellow of the International Academy of Medical and
Biological Engineering (IAMBE).

Marios S. Pattichis (M’99–SM’06) received the
B.Sc. degree (High Hons. and Special Hons.) in
computer sciences, the B.A. degree (High Hons.) in
mathematics, the M.S. degree in electrical engineer-
ing, and the Ph.D. degree in computer engineering
from The University of Texas at Austin, Austin, TX,
USA, in 1991, 1991, 1993, and 1998, respectively.

He is currently a Gardner Zemke Professor and
Associate Chair with the Department of Electrical
and Computer Engineering and a fellow with the
Center for Collaborative Research and Community

Engagement in the College of Education, at The University of New Mexico
(UNM), Albuquerque, NM, USA. At UNM, he is currently the Director of the
Image and Video Processing and Communications Lab (ivPCL). His current
research interests include digital image and video processing, educational
models for learning, video communications, dynamically reconfigurable hard-
ware architectures, and biomedical, educational and space image-processing
applications. For his development of the Digital Logic Design Labs at UNM,
he was recognized by the Xilinx Corporation in 2003 and the UNM School
of Engineering’s Harrison Faculty Excellent Award in 2006. He is the general
co-chair of the 2020 IEEE Southwest Symposium on Image Analysis and
Interpretation (SSIAI), and served as the general chair for the 2008 SSIAI.
He was a founding Co-PI of the COSMIAC Research Center, UNM. He
is currently a Senior Associate Editor of the IEEE Transactions on Image
Processing. He has served as a Senior Associate Editor for the IEEE Signal
Processing Letters, an Associate Editor for the IEEE Transactions on Image
Processing and the IEEE Transactions on Industrial Informatics, and a Guest
Associate Editor for the IEEE Transactions on Information Technology in
Biomedicine.

http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/

