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Abstract We propose a dynamically reconfigurable sys-

tem for time-varying image constraints (DRASTIC) for

applications in video communications. DRASTIC defines a

framework for both joint and independent optimization of

dynamic power, image quality, and bitrate subject to dif-

ferent constraint scenarios. We demonstrate DRASTIC for

intra-mode video encoding for MJPEG. However, since the

DCT is critical component of most video coding standards,

our approach can be extended to modern standards such as

AVC (H.264), and emerging standards such as HEVC

(H.265), and VP9. Based on a hardware–software co-

design approach, we define a family of scalable 2D DCT

hardware modules that are jointly optimized with the

quality factor (in software). We generate a total of 1,280

configurations of which 841 were found to be Pareto

optimal. For full 2D DCT calculation, the results indicate

that the proposed method is DRASTIC mode implemen-

tation at least as good or significantly better than any

previously published implementation. A scalable, real-time

controller is used for selecting an appropriate configuration

so as to meet time-varying constraints. The real-time

controller is shown to satisfy the constraints of different

communications modes (e.g., minimum dynamic power,

maximum image quality, etc.) as well as to adapt to mode

changes. Empirically, we have found that the DRASTIC

controller adapts to meet the new constraints within five

video frames of a mode change. Overall, the proposed

approach yields significant savings over the use of com-

parable static architectures.

Keywords MJPEG � FPGA � DCT � Zonal � Finite word

length � Dynamic partial reconfiguration � Dynamically

reconfigurable computing

1 Introduction

The performance of video communication systems depends

on balancing requirements associated with the network, the

user experience, and the video display device. For example,

the network imposes bandwidth constraints. On the other

hand, users require sufficient levels of video quality. For

display on mobile devices, it is also important to conserve

power. Often, the constraints can lead to opposing

requirements. For example, delivering higher video quality

requires higher levels of power and bandwidth. This paper

describes a dynamically reconfigurable system that allows

the users to meet real-time constraints on image quality,

dynamic power consumption, and available bandwidth.

More generally, the term dynamically reconfigurable

architecture system for time-varying image constraints

(DRASTIC) is used to describe a video communication

system that can meet real-time constraints through dynamic

reconfiguration.

We propose the use of four fundamental communica-

tions modes that can be used to summarize the require-

ments for optimal performance subject to real-time

constraints:

– Minimum dynamic power mode: The goal for this

mode is to minimize dynamic power subject to

available bandwidth and a minimum level of acceptable
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image quality. In this mode, a mobile device can reduce

its power requirements without sacrificing the user

experience. Furthermore, in this mode, a mobile device

can conserve energy and maximize its operating time.

– Minimum bitrate mode: The goal of this mode is to

minimize bitrate requirements subject to a maximum

level of dynamic power and a minimum level of

acceptable image quality. Thus, the user can enjoy the

compressed video without sacrificing video quality.

Furthermore, since the bitrate is minimized, the

network can accommodate a large number of users

without sacrificing the service.

– Maximum image quality mode: The goal of this mode

is to maximize image quality without exceeding the

maximum available bandwidth or the maximum avail-

able dynamic power. In this mode, the user will be able

to examine the video at the maximum possible video

quality that can be delivered by all available bandwidth

and computing power.

– Typical mode: In this mode, the goal is to optimize a

weighted average of the required dynamic power,

bitrate, and image quality within constraints on all of

them. Here, we have a balanced approach that supports

trade-offs between dynamic power, quality, and bitrate.

Clearly, by selecting appropriate weights in the typical

mode, we can achieve the performance of the other three

modes. Yet, we still focus on the different modes to

emphasize the user requirements for minimizing power,

bitrate, or maximizing quality.

The DCT is a critical component of most video coding

standards. More specifically, AVC (H.264), the emerging

HEVC (H.265), and VP9 video coding standards critically

depend on DCT and quantization for compression. How-

ever, the current paper is focused on the use of DCT with

MJPEG. The fundamental advantage of MJPEG comes

from its very low complexity (e.g., see [1]) that makes it

popular in low-profile webcams, surveillance systems [2, 3]

and emerging applications in virtual network computing

(VNC) [4]. Essentially, due to its low-complexity, low-

power requirements, MJPEG remains popular for mobile

devices with limited computational resources. Neverthe-

less, the system described here can be extended and applied

to most video coding standard. The application to a new

video coding standard would require replacing the existing

DCT and quantization components with the ones devel-

oped in this paper. The adaptive controller development

will be different since other coding components (intra

prediction, coefficients scan process, etc.) may affect

performance.

The basic system is shown in Fig. 1. The approach is

demonstrated in the compression of the Y-component of

color video. Here, a joint software–hardware optimization

system uses a dynamic reconfiguration (DR) controller to

select DCT hardware cores and quality factor (QF) values

to meet constraints in bitrate, image quality, and power. To

solve the optimization problem, the system relies on the

use of feedback from the current bitrate, image quality

measured using the structural similarity index metric

(SSIM), and pre-computed dynamic power consumed by

an adaptive DCT IP core. A dynamic reconfiguration (DR)

controller compares the current bitrate, image quality, and

power with the required levels to determine if constraints

are met. Depending on each optimization mode, a suitable

DCT IP core and quality factor value is selected for the

next video frame. Alternatively, the dynamic reconfigura-

tion overhead can be reduced by fixing the hardware con-

figuration over a number of video frames or until a

maximum number of reconfigurations has been met.

The basic contributions of the paper are summarized as

follows:

– DRASTIC optimization modes for video communica-

tions: The paper introduces new real-time optimization

approaches that can be used to minimize dynamic

power, maximize image quality, reduce bitrate, or

provide balanced solutions for meeting real-time video

constraints. This approach extends traditional rate–

distortion optimization approaches that do not consider

dynamic energy or power constraints or the use of

image quality metrics (e.g., SSIM [5]). Earlier work on

the modes appeared in our conference paper in [6].

However, this earlier work did not address the case

when the constraints cannot be met. To avoid failure

when the constraints cannot be met, this paper allows

the system to use alternative configurations based on

unconstrained optimization [described later with

Eq. (5)]. Furthermore, our earlier conference work

was never demonstrated on digital videos. In the

current paper, the methodology is validated on digital

videos.

Fig. 1 Dynamically reconfigurable architecture system for time-

varying image constraints (DRASTIC) for motion JPEG
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– Scalable, pareto-optimal DCT cores with quantization

control: A scalable architecture is used to generate a

family of hardware cores that can be used to compute

lower-frequency subsets of the DCT frequencies using

different bit-widths. The approach is motivated by the

observation that significant compression can be

achieved through the effective quantization of high-

frequency components. Thus, in addition to the scalable

DCT cores, we investigate the use of different quality

factors that control the DCT quantization tables. This

results in a joint software–hardware optimization

approach. Yet, not all generated configurations will

necessarily be useful. We use a training set to

determine the hardware configurations that are Pareto

optimal. Earlier work on the Pareto front appeared in

our conference papers published in [6, 7]. The current

paper uses a new hardware design that combines the

approaches described in [6, 7] to derive a much larger

configuration and performance space that was previ-

ously considered. As a result, the new approach allows

for finer optimization control.

– Scalable dynamic reconfiguration controller based on

feedback: a dynamic reconfiguration controller is used

for meeting real-time constraints through a joint

optimization of the software–hardware configuration.

In real time, the controller selects the active DCT core

and quality factor from a set of pre-computed, pareto-

optimal configurations. After a selection is made, real-

time feedback is used for adjusting the DCT core and

the quality factor. Dynamic reconfiguration overhead is

controlled in a scalable fashion by adjusting the number

of video frames between configurations or the total

number of reconfigurations per reconfiguration duration

that can be used. In the case of unrealistic constraints

that cannot be met, the controller selects the best

solution based on reformulation of the problem using

unconstrained optimization. The controller is com-

pletely new and never appeared in our previous

conference publications.

The rest of the paper is organized as follows. Related work

background is given in Sect. 2. The proposed architecture

is described in Sect. 3. Results and analysis are shown in

Sect. 4. Section 5 gives conclusion and future work.

2 Background and related work

We provide a summary of related research in this section.

Related research on dynamic partial reconfiguration for

multi-objective image/video processing is discussed in

Sect. 2.1. Related research on rate–distortion–complexity

for video compression is discussed in Sect. 2.2. Different

hardware implementations of the DCT are detailed in Sect.

2.3. Chen’s algorithm is discussed in Sect. 2.4. The use of

SSIM for image quality assessment and the quality factor

for JPEG is discussed in Sects. 2.5 and 2.6, respectively.

2.1 Dynamic partial reconfiguration for multi-objective

image/video processing/compression

Dynamic partial reconfiguration (DPR) on an FPGA sys-

tem allows the modification of the functionality in real time

while allowing the rest of the system to operate normally

without requiring a restart [8]. Prior research focused on

the computation of DCTs as reported in [9–11]. The basic

idea in these papers was to avoid the computation of

higher-frequency components by only computing the

N � N, N ¼ 1; 2; . . .; 8 lower frequency components. In

[9–11], the authors demonstrated the use of this adaptive

DCT in an MPEG2 system.

Some of the basic concepts behind the use of dynamic

partial reconfiguration (DPR) for meeting real-time con-

straints have been recently presented in [12]. In [12], the

focus was on the development of a video pixel processor

that can be adapted to meet real-time constraints in power/

energy–performance–accuracy.

To satisfy multi-objective optimization constraints in

hardware, there is a need to generate a family of hardware

cores that sample different points in the multi-objective

space. The pareto front is computed from the family of the

generated hardware realizations. The pareto front repre-

sents the set of optimal configurations. To meet real-time

constraints, a dynamic reconfiguration controller selects a

pareto-optimal realization and implements it in hardware

using dynamic partial reconfiguration.

2.2 Rate–distortion–complexity control for video

compression

A relatively recent attempt to manage real-time computa-

tional complexity in video encoding has been described in

[13]. In [13], to limit computational complexity, the

authors recommended dropping video frames while

attempting to manage image quality. Overall, this direct

approach attempts to manage video quality losses by

smoothing frame rates. As verified by subjective video

quality measurements, the managed approach will perform

better than a reference encoder.

An approach related to the research presented in this

paper has been recently introduced in [14] and further

developed in [15]. In [14], the authors were interested in

power–rate–distortion (P-R-D) optimization for wireless

video communication under energy constraints. Here, the

authors use dynamic voltage scaling (DVS) to control

power consumption and then investigate the rate–distortion
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performance under power control. The paper demonstrates

how the system adjusts its complexity control to match the

available energy supply while maximizing the picture

quality. In [15], the authors show that they can achieve up

to a 50 % reduction in power consumption by adjusting the

hardware configuration to follow the non-stationary char-

acteristics of the video. Some of the issues associated with

the attempt to use complexity control with motion esti-

mation have been the focus of more recent research in

medium-granularity complexity control (MGCC) reported

in [16]. In [16], the authors introduced a rate–complexity–

distortion model for a group of pictures (GOP) to allocate

complexity at the frame level.

The fundamental advantages of the proposed approach

over previous approaches include:

– Dynamically reconfigurable hardware–software setup:

DRASTIC extends the standard adjustment of software

parameters to a joint software–hardware reconfigura-

tion framework. The approach relies on the use of

dynamic partial reconfiguration to adjust DCT hard-

ware resources and the quantization parameter to meet

constraints, optimize the use of resources, while

optimizing objective performance.

– Dynamic multi-objective optimization and control

framework: The DRASTIC approach is a multi-objec-

tive, constrained optimization approach. The four

DRASTIC modes generalize prior research in this area

by considering optimization of individual objectives as

well as scalar combinations of the objectives. The

approach is dynamic and allows fine control and

switching between modes from frame to frame.

As noted earlier, for low-energy devices that use MJPEG,

motion estimation is avoided. Furthermore, a scalable and

parameterizable system based on the DCT and the quality

factor, such as the one developed here, can also be applied

for motion compensation of motion-based video coding.

Clearly though, our optimization modes provide a general

framework for extending this prior research of minimizing

energy to new modes that support maximizing quality,

minimizing bitrate and a more general typical mode. Our

optimization is switchable (with different modes) and

adjustable (with different constraints). The scalable DR

controller also allows the user to control the reconfiguration

overhead while estimating performance at the frame level.

2.3 DCT hardware implementations

This section provides a review of 2D DCT implementa-

tions. The review focuses on the complexity of each

approach that suggests the need for a separable imple-

mentation that allows scalability in the number of accuracy

bits and the number of DCT frequencies to be computed.

Let X8�8 represent an input image block after DC shift.

Here, note that the DC shift is implemented by subtracting

128 from the unsigned 8-bit input image. The DCT output

image is then represented as a 16-bit signed integer given by:

Zu;v ¼ CuCv

X7

i¼0

X7

j¼0

Xi;j cos
uð2iþ 1Þp

16

� �
cos

vð2jþ 1Þp
16

� �

ð1Þ

where:

Cu ¼
1

2
ffiffi
2
p for u ¼ 0

1
2

for u [ 0

(

DCT implementations can be classified into the following

categories:

– Direct approaches [17–23]: the 2D DCT is imple-

mented using matrix–vector products. Direct methods

based on Chen’s algorithm [24] are very effective and

represent a very popular choice.

– Distributed arithmetic (DA)-based designs [25–28]: the

2D DCT result is computed bit by bit by considering

the products of the DCT basis functions with the input

image block. DA-based designs are inherently bit-serial

in nature and this issue cannot be addressed effectively

except for the special cases (see [25]). Given the

complexity and focus on bit-by-bit computation, DA-

based approaches cannot be easily adapted for of

computing a limited number of DCT frequencies, as

required for DRASTIC.

– Systolic array (SA)-based designs [10, 29–31]: the

DCT is computed using a relatively large array of

processing elements (PEs) arranged in a systolic array

pattern. Unfortunately, SA implementations require

significant resources and sophisticated I/O control.

– CORDIC-based designs [32–34]: a CORDIC processor

is used for computing the cosine coefficients in the

DCT. Similar to SA implementations, CORDIC imple-

mentations require significant resources.

– Algebraic integer(AI)-based designs [35]: by mapping

possibly irrational numbers to an array of integers,

these methods can achieve high precision. However,

good precision requires significant resources.

Compared to separable approaches, non-separable

approaches require more resources since the number of

required FIR taps grows as N2 as opposed to N for the

separable case. Furthermore, for dynamic reconfiguration,

it is clear that non-separable approaches require consider-

able overhead since we will have store the architecture

descriptions in memory. Thus, in what follows, the paper

will focus on a separable approach based on Chen’s algo-

rithm [24].
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2.4 A separable implementation of the 2D DCT based

on Chen’s algorithm

From (1), a separable implementation of the 2D DCT is

given by Z ¼ ðMXÞMT , where Mi;j ¼ Ci cosðið2jþ1Þp
16
Þ. Here,

ðMXÞMT is implemented by first transposing ðMXÞ and

then applying M. Thus, a separable implementation is

based on: Z ¼ ðMðMXÞTÞT .

To efficiently implement multiplication by M, let

Di ¼ cosðip=16Þ=2, and define a ¼ D4, b ¼ D1, c ¼ D2,

d ¼ D3, e ¼ D5, f ¼ D6, g ¼ D7, the output Y ¼ MX is

computed using:

Yð0Þ

Yð2Þ

Yð4Þ

Yð6Þ

2
666664

3
777775
¼

aa

00

a� a

00

2
666664

3
777775

10

01

10

01

2
666664

3
777775

Xð0Þ þ Xð7Þ

Xð1Þ þ Xð6Þ

Xð2Þ þ Xð5Þ

Xð3Þ þ Xð4Þ

2
666664

3
777775
: ð2Þ

Then, an efficient matrix decomposition can be used to

implement the odd-indexed output expressed as:

Yð1Þ

Yð3Þ

Yð5Þ

Yð7Þ

2
666664

3
777775
¼

bd

d � g

e� b

g� e

2
666664

3
777775

Xð0Þ � Xð7Þ

Xð1Þ � Xð6Þ

Xð2Þ � Xð5Þ

Xð3Þ � Xð4Þ

2
666664

3
777775
: ð3Þ

To produce a frequency-scalable representation, begin with

the lower-indexed DCT coefficients given by

Yð0Þ; Yð1Þ; . . .; YðnÞ, where n� 7. Then, in the imple-

mentation of the DCT, the corresponding rows in Eqs. (2)

and (3) need to be implemented so as to compute the

required DCT coefficients. In the separable approach

described here, the 2D DCT coefficients are given by

Xu;v 0� u; v� n [see Eq. (1)].

2.5 Video image quality assessment using SSIM

Video image quality will be assessed using the structural

similarity index (SSIM) [5]. Here, note that video quality

assessment is still an open problem (e.g., see [36–39]).

However, SSIM provides a simple and effective method for

assessing video image quality of individual frames.

Assuming that x; y represent the original and recon-

structed images, SSIM is given by:

SSIMðx; yÞ ¼ lðx; yÞa � cðx; yÞb � sðx; yÞc ð4Þ

which is expressed as the product of the luminance (lðx; yÞ),
the contrast (cðx; yÞ), and structure components (sðx; yÞ),
and a; b; c[ 0 are set to the default value of 1.

2.6 Quantization table specification using a quality

factor

The DCT quantization level will be controlled using the

quality factor (QF). QF is given as integer value that is

constrained between 1 and 100. The DCT quantization

table is then given by:

Qij ¼ Clip1;255

Q�ij � scaleþ 50

100

� �

clipped to stay within 1 and 255, Q�ij refers to the standard

JPEG quantization table for scale ¼ 1 and the scale is

given by:

scale ¼
5;000=QF; for 1�QF\50;

200� 2 � QF; for 50�QF� 99;

1; for QF ¼ 100:

8
><

>:

3 A dynamically reconfigurable architecture system

for time-varying image constraints (DRASTIC)

To introduce the proposed DRASTIC implementation,

the constrained optimization framework for defining

DRASTIC modes is discussed in Sect. 3.1. Section 3.2

describes the implementation of reconfigurable hardware

DCT IP cores. The generation of the pareto and the

selection of an optimal configuration are discussed in

Sect. 3.3. A scalable controller to minimize the recon-

figuration overhead is discussed in Sect. 3.4. Then, the

proposed DRASTIC implementation for M-JPEG is

given in Sect. 3.5.

3.1 Constrained optimization formulation

The optimization objectives are defined in terms of: (1) DP

which denotes the dynamic power consumed by the FPGA

(see [12]), (2) BPS which denotes the number of bits per

sample, and (3) Q which denotes the image quality metric.

In terms of the free parameters that we can modify to

achieve our objectives, let HW denote the different hard-

ware configurations, and let QF denote the quality factor

used for controlling the quantization table (software con-

trolled). To formulate constraints on the objectives, let

Bmax denote the maximum acceptable bitstream bandwidth,

Pmax denote the maximum dynamic power available, and

Qmin denote the minimum level of acceptable image

quality.

The DRASTIC modes are then defined as constrained

optimization problems using:

– minimum power mode (mode=0):
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min
HW ;QF

DP subj:to : ðSSIM�QminÞ and ðBPS�BmaxÞ:

– minimum bitrate mode (mode=1):

min
HW ;QF

BPS subj:to : ðSSIM�QminÞ and ðDP� PmaxÞ:

– maximum image quality mode (mode=2):

min
HW ;QF

�SSIM subj:to : ðBPS�BmaxÞ and ðDP� PmaxÞ:

– typical mode (mode=3):

min
HW ;QF

�a � SSIMþ b � BPSþ c � DP

subj:to :

ðBPS�BmaxÞ and ðSSIM�QminÞ and ðDP� PmaxÞ:

3.2 Hardware design

A scalable and separable implementation of the DCT is

shown in Fig. 2. A ping-pong memory [22] implementation

is used for efficient implementation of the transpose

operation. The decompose filter component shown in Fig.

2. The architecture design of the decompose filter is shown

in Fig. 3. The 1D filter used in implementing (Eq. 3) is

shown in Fig. 4.

The implementation in Fig. 2 represents a parallelized

and pipelined implementation. In terms of parallelism, we

note that the column DCTs can be implemented in parallel,

followed by transposition in ping-pong memory, and then

the row DCTs. Row operations in Eq. (3) are carried out in

parallel using 1D filters. The trim operations implement

floor operations by truncating the results towards zero as

shown in Fig. 5. For each 1D DCT, we have a four-staged

pipeline. The ping-pong transpose memory consists of two

8� 8 transpose memory arrays. In pipelined operation, a

row DCT is computed in each cycle. Furthermore, it takes

eight cycles to complete a 2D DCT.

Fig. 2 Scalable data path for the 2D-DCT using ping-pong transpose memory. The number of bits used at each stage is given. The input image

block is assumed to be of size 8 with signed, 8-bit integer values. The removal of the highest frequency components is highlighted in red

Fig. 3 Scalable decompose filter implementation of the matrix–

vector product given in Eq. (2). Refer to Fig. 2 for how the

decompose filter fits the DCT core. The inputs Sij refer to the XðiÞ þ
XðjÞ sum of equation (2). The outputs correspond to

Yð0Þ;Yð2Þ;Yð4Þ;Yð6Þ of (2). The datapath associated with the

highest frequency component is highlighted in red. Note how tracing

backwards from each output, we can generate a scalable datapath that

removes the circuitry associated with each frequency component

Fig. 4 Implementation of the 1D filters shown in Fig. 2. Here, C0--
C3 refer to the DCT Kernel coefficients and X0--X3 refer to sums

and differences computed on the input data (see Fig. 2)
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The scalability required for effective multi-objective

optimization is implemented using zonal control [7, 9–11,

40], and output bit-width control. As stated earlier, the

basic idea is to achieve perceptual scalability by keeping

the lower frequency components, while eliminating the

computation of higher-frequency components. We

implement 8 levels associated with keeping the DCT

lower-frequency subsets of the complete frequency set. We

use Z0 to Z7 to denote the different zones (levels) associ-

ated with the DCT computation. Similarly, for bit-width

control, we keep the most significant bits [6, 41]. This is

implemented adjusting the word-length implementation of

the DCT coefficients a to g in Sect. 2.3 using WL 2 ½2; 9�.

3.3 Pareto front and configuration based on constraints

The selection of possible DCT hardware core needs to be

jointly considered with control of the quantization table.

For example, gains due to increasing the bit-width in the

DCT cores may be offset by a decrease in the quality factor

(see Sect. 2.6). The goal here is to eliminate configurations

that are not pareto optimal [12]. In other words, we

Fig. 5 Signed integer trimming of a-bit input x to an (a-b)-bit

output by truncating the output towards zero (floor operation). This

component is used to control the bit-width in the optimization process

Input: input video, initial DRASTIC mode DRASTICmode with associated
constraints as subset of (Bmax, Pmax, Qmin), offline trained Pareto front, re-
configuration period RecP, maximum allowed reconfigurations RecC per
RecDur frames.

Output: generated compressed video stream that implements the given
DRASTIC mode.

1: Initialize DRASTICmode as initially specified.
2: Initialize RecDur as initially specified.
3: Initialize constraints as initially specified.
4: Initialize counter for dyn. reconf.: RecCtr = 0.
5: Initialize frame index inside a reconf. dur. : n = 0.
6: Initialize constraint budgets:

ΔBPS,0 = ΔDP,0 = ΔQ,0 = 0.
7: while video communication holds do
8: while n < RecDur do
9: if (RecCtr < RecC and n%RecP = 0) then

10: Search Pareto front for opt. HW,QF
11: if no configuration satisfies constraints then
12: Solve unconstr. opt. prob. for opt.

HW,QF as given by eq. (5).
13: end if
14: Apply DPR with HW,QF .
15: Compress current frame.
16: Update constr. budgets as given

by eqns (6) and (7).
17: Update RecCtr = RecCtr + 1.
18: else
19: Compress current frame.
20: end if
21: Update n = n + 1.
22: end while
23: Reset n = 0, RecCtr = 0,

ΔBPS,0 = ΔDP,0 = ΔQ,0 = 0.
24: Check DRASTICmode for change.
25: Check RecDur for change.
26: Check constraints for change.
27: end while

Fig. 6 General framework for

DRASTIC mode

implementation
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eliminate configurations for which we can find another

configuration that delivers performance that is at least as

good in all of the objectives (quality, power, bitrate), and

performs better in at least one of the objectives [12]. The

remaining configurations represent the Pareto front that

will be used in further optimization.

In practice, the pareto front can be computed offline

using a training set. For each configuration, the average

performance for each set of objectives will be used for

determining the Pareto front.

We consider a direct implementation of DRASTIC

modes by searching through the pareto front. In this direct

approach, we select the configuration that minimizes the

optimization objective while satisfying the constraints. For

example, in the maximum quality mode, we would select

the configuration that provides for the best (max) image

quality while not exceeding constrains on power and

bitrate.

Clearly, it is possible that the constraints cannot be met

on the pareto front. In this case, we reformulate the prob-

lem using unconstrained optimization so that the controller

will select a configuration that will be as close as possible

to the desired constraints. For example, for the typical

mode, when all constraints are active, we select the con-

figuration that solves:

minHW ;QF aðBmax;n � BPSnÞ2

þ bðPmax;n � DPnÞ2

þ cðQmin;n � SSIMnÞ2;
ð5Þ

where the weights a; b; c can be set equal or adjusted to

give emphasis to different constraints. When a constraint is

not active, its corresponding weight is set to zero. For

example, for the maximum quality mode, we will set

c ¼ 0. We select the weights so as to scale each constraint

violation by the user-specified range of bounds. For

example, if Q1;Q2 represent the minimum and maximum

bounds on image quality, we set c to c ¼ 1=ðQ2 � Q1Þ2.

We use a similar approach for a and b.

3.4 Scalable control of reconfiguration overhead

Unlike architectures for H.264 and H.265 video encoding,

for our target MJPEG application, feedback can be an

expensive operation. Thus, we avoid using feedback or

dynamic partial configuration (DPR) for every single video

frame. Periodic updates and limited number of reconfigu-

rations are adopted requiring the estimation of rate–dis-

tortion performance for a selected number of frames for

which reconfiguration is allowed. We will next provide a

description of the approach. Let RecP denote the recon-

figuration period that describes the number of frames

between two system reconfigurations. Also, let RecC

denote the maximum number of allowed reconfigurations

for a specified duration of RecDur (from recconfiguration

duration) video frames. Unless otherwise specified, we set

RecDur ¼ 100 by default so that RecC can be interpreted

as the percentage of the number of fames for which the

system is allowed to reconfigure.

The proposed approach is to adjust the frame-level

constraints set for each video frame for which we have

rate–distortion estimates so that the mode constraints will

be met on average over the processed frames. To illustrate

the basic idea for the bitrate constraint, let n denote the

current video frame, and recall that Bmax denotes the

maximum number of bits per pixel. After processing the

video frame, let BPSn denote the measured number of bits

per sample that were used in encoding the n-th frame. We

then have that the remaining bits per sample that can be

allocated (or deallocated) to future frames are given by

DBPS;n ¼ Bmax � BPSn: ð6Þ

Assuming that we periodically reconfigure after RecP

frames, we would then adjust the maximum bitrate allo-

cated for the n-th frame Bmax;n using:

Bmax;n ¼
Bmax þ DBPS;n=RecP; for n % RecP ¼ 0

Bmax;n�1; otherwise;

�
ð7Þ

which allocates (or deallocates) the remaining bits over

RecP frames. To see how the correction is applied, note

that a correction of DBPS;n=RecP every RecP frames.

However, after the correction is made, the rest of the

frames in the period get the same amount of correction

since they use Bmax;n�1 that already includes the additional

term of DBPS;n=RecP. Thus, by adjusting the number of bits

per sample for each video frame, we expect that the con-

straints will be met on average. Similarly, the approach can

be applied for updating constraints on image quality Qmin;n
and dynamic power Pmax;n. Furthermore, the rule in Eq. (7)

can be easily extended so that it will only apply when the

number of dynamic reconfigurations does not exceed a

maximum bound.

3.5 Scalable DRASTIC controller

The general framework for implementing a DRASTIC

mode is given in Fig. 6. Switching between DRASTIC

modes requires that the system updates the DRASTICmode
variable and that the algorithm will recognize the change at

the end of a reconfiguration duration. On the other hand,

we note that the pareto front is applied to all of the modes

and thus, it only needs to be computed once over the

training data. The controller adjusts the overhead based on

maximum number of reconfigurations RecC per RecDur

frames and the reconfiguration period RecP.
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For each reconfiguration duration, initially, a single

video frame is processed to estimate the objectives based

on the initial configuration. The relevant constraint budgets

are then updated and used to search the pareto front for the

optimal configuration [see Eq. (7)]. Failure to find a con-

figuration that satisfies the constraints will force a refor-

mulation of the problem as an unconstrained optimization

problem. Once the optimal configuration has been found, it

is used for processing the remaining RecP� 1 frames of

the current period. The procedure is then repeated for the

next set of RecP video frames until RecC reconfigurations

have been executed. Once the configuration number RecC

is reached, rest frames in this duration will be compressed

with configuration unchanged.

4 Results

In this result section, we first describe how the Pareto front is

generated and compare our DCT implementation with other

state-of-the-art DCT implementations in Sect. 4.1. DRAS-

TIC implementation results and how to choose scalable

parameters are analyzed in Sect. 4.2. Finally, an example of

DRASTIC mode transition is discussed in Sect. 4.3.

4.1 Pareto-front estimation and comparisons of full 2D

DCT implementations

To generate an estimate of the Pareto front, we use the

LIVE image database as a training set [42]. For each

configuration, we generate the hardware core and estimate

the required bitrate, image quality, and dynamic power that

is required for compressing each image. For the dynamic

power, we use Xilinx’s XPower tool to estimate power

consumption on a Virtex-5 device (Xilinx XC5VLX110T).

Then, the Pareto front is estimated based on the median

value of each configuration.

We generate hardware configurations by varying: (1) the

software-based quality factor QF ¼ 5; 10; 15; . . .; 100 (20

settings), (2) the DCT hardware to compute Zu;v for

0� u; v\Z ¼ 1 to 8 (8 settings), and (3) the DCT coeffi-

cients implemented in hardware using word length WL ¼
2; 3; 4; . . .; 9 (8 settings). Based on the different settings, we

have 20� 8� 8 ¼ 1;280 possible configurations from

which only 841 were found to be Pareto optimal. The Pa-

reto front is shown in Fig. 8.
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Fig. 7 Resource allocation and estimated dynamic power consump-

tion for 64 hardware configurations based on bit-width values:

2�WL� 9 and zonal values: 1�Z� 8. a Slice resources as a

function of the zonal configuration and bit-width. b Dynamic power

consumption as a function of zonal configuration and bit-width. From

the dynamic power results, it is clear that a scalable set of DCT

architectures has been achieved
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Figs. 11 and 12 for box plots of the results. Pareto optimal
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The resulting hardware configurations are summarized

in Table 1 and the corresponding estimated dynamic power

is shown in Fig. 7. To visualize the scalability of the pro-

posed approach, we index the hardware configurations

using Config ¼ ðZ � 1Þ � 8þ WL� 1. Then, we plot the

the required slices and dynamic power against Config in

Fig. 7. From Fig. 7b, it is clear that the dynamic power is

densely sampled in the configuration space. Returning to

the pareto front results of Fig. 8, it is important to note the

relatively dense sampling achieved over the pareto front for

image quality levels associated with SSIM[ 0:7. This

observation is important since reducing image quality

below this level will produce images of unacceptable

quality (e.g., see Fig. 12d).

A comparison of the full DCT implementation against

other FPGA implementations is given in Table 2. As a

result of the parallel and pipelined implementation, the

proposed DCT architecture achieves the highest throughput

by only requiring 8 cycles to compute a 2D DCT. Yet, the

implementation requires lower numbers of FPGA slices

and consumes low levels of dynamic power. In terms of

dynamic power, we note the lower results due to Huang

et al. [9] were achieved using a much simpler architecture

at a much lower frequency (41.79 versus 100 MHz of the

proposed approach), that requires a significantly higher

number of throughput cycles. In any case, the greatest

advantage of the proposed approach is the fact that it is

scalable in dynamic power, image quality, and bitrate while

Table 1 Synthesized results for DCT Cores on XC5VLX110T

�1FF1136

WL Z LUT (%) Registers

(%)

Slices

(%)

Max freq

(MHz)

Power

(mW)

2 1 622 (1) 534 (1) 257 (1) 250.376 53.03

3 1 684 (1) 540 (1) 267 (1) 249.066 52.98

4 1 659 (1) 540 (1) 266 (1) 249.066 46.67

5 1 713 (1) 545 (1) 271 (1) 245.881 51.21

6 1 756 (1) 547 (1) 274 (1) 204.834 56.87

7 1 768 (1) 548 (1) 293 (1) 204.834 54.37

8 1 799 (1) 552 (1) 295 (1) 203.832 58.22

9 1 806 (1) 553 (1) 293 (1) 203.832 56.58

2 2 847 (1) 886 (1) 378 (2) 250.689 95.85

3 2 1,074 (1) 954 (1) 439 (2) 249.066 100.28

4 2 1,099 (1) 958 (1) 434 (2) 247.463 100.06

5 2 1,314 (1) 988 (1) 467 (2) 209.293 101.09

6 2 1,361 (1) 999 (1) 495 (2) 204.834 103.57

7 2 1,403 (2) 1,006 (2) 499 (2) 204.750 108.03

8 2 1,556 (2) 1,024,(2) 541 (3) 203.832 110.65

9 2 1,662 (2) 1,038 (2) 571 (3) 203.293 114.56

2 3 951,(1) 1,137 (1) 470 (2) 250.689 135.65

3 3 1,238 (1) 1,211 (1) 526 (3) 249.066 147.82

4 3 1,238 (1) 1,215 (1) 543 (3) 247.463 148.92

5 3 1,507 (2) 1,250 (2) 601 (3) 209.293 159.57

6 3 1,597 (2) 1,263 (2) 603 (3) 204.834 161.17

7 3 1,651 (2) 1,271 (2) 639 (3) 204.750 160.50

8 3 1,835 (2) 1,293 (2) 661 (3) 203.832 167.79

9 3 1,948 (2) 1,308 (2) 706 (4) 203.293 172.91

2 4 1,242 (1) 1,454 (1) 613 (3) 250.689 199.83

3 4 1,540 (2) 1,548 (2) 661 (3) 249.066 215.33

4 4 1,573 (2) 1,555 (2) 677 (3) 247.463 222.61

5 4 1,936 (2) 1,599 (2) 756 (4) 207.684 230.89

6 4 2,070 (2) 1,619 (2) 786 (4) 203.998 238.55

7 4 2,139 (3) 1,632 (3) 804 (4) 203.832 239.61

8 4 2,416,(3) 1,672 (3) 870 (5) 203.832 247.22

9 4 2,624 (3) 1,699 (3) 908 (5) 202.143 262.42

2 5 1,367 (1) 1,701 (1) 688 (3) 250.689 288.24

3 5 1,727 (2) 1,832 (2) 759 (4) 205.170 302.56

4 5 1,844 (2) 1,849 (2) 798 (4) 202.593 311.60

5 5 2,214 (3) 1,899 (3) 863 (4) 160.668 325.87

6 5 2,341 (3) 1,917 (3) 872 (5) 160.668 324.05

7 5 2,464 (3) 1,941 (3) 919 (5) 158.078 334.35

8 5 2,771 (4) 1,989 (4) 1,036 (5) 157.953 352.93

9 5 3,040 (4) 2,019 (4) 1,074 (6) 156.519 366.55

2 6 1,560 (2) 1,983 (2) 782 (4) 250.689 362.18

3 6 1,977 (2) 2,146 (2) 879 (5) 205.170 390.94

4 6 2,125 (3) 2,166 (3) 905 (5) 202.593 394.71

5 6 2,613 (3) 2,248 (3) 994 (5) 160.668 409.80

6 6 2,742 (3) 2,277 (3) 1,048 (6) 160.668 421.03

7 6 2,880 (4) 2,306 (4) 1,101 (6) 158.078 432.90

8 6 3,315 (4) 2,363 (4) 1,226 (7) 157.953 451.66

Table 1 continued

WL Z LUT (%) Registers

(%)

Slices

(%)

Max freq

(MHz)

Power

(mW)

9 6 3,659 (5) 2,412 (5) 1,295 (7) 156.519 470.98

2 7 1,685 (2) 2,230 (2) 892 (5) 250.689 478.08

3 7 2,164 (3) 2,430 (3) 990 (5) 205.170 517.46

4 7 2,396 (3) 2,460 (3) 1,018 (5) 202.593 523.60

5 7 2,891 (4) 2,548 (4) 1,165 (6) 160.668 545.27

6 7 3,013 (4) 2,575 (4) 1,194 (6) 160.668 560.92

7 7 3,205 (4) 2,615 (4) 1,260 (7) 158.078 575.57

8 7 3,670 (5) 2,680 (5) 1,382 (7) 157.953 592.27

9 7 4,075 (5) 2,732 (5) 1,471 (8) 156.519 610.75

2 8 1,895 (2) 2,510 (2) 1,002 (5) 250.689 541.17

3 8 2,431 (3) 2,742 (3) 1,101 (6) 205.170 577.46

4 8 2,694 (3) 2,775 (3) 1,160 (6) 202.593 594.46

5 8 3,338 (4) 2,898 (4) 1,295 (7) 160.668 609.64

6 8 3,481 (5) 2,934 (5) 1,347 (7) 160.668 625.68

7 8 3,686 (5) 2,979 (5) 1,430 (8) 158.078 634.09

8 8 4,212 (6) 3,046 (6) 1,553 (8) 157.953 667.75

9 8 4,716 (6) 3,122 (6) 1,686 (9) 156.519 682.88
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providing full DCT calculation that is at least as good or

better than any previously published approach.

4.2 DRASTIC mode implementation and comparison

to optimized static approaches

This section summarizes how the proposed approach can

lead to significant savings over optimized static approa-

ches. While training was performed on the UT LIVE image

database, the system was validated on an independent

testing video database of nine standard videos: city, crew,

football, foreman,hall monitor, harbor, mobile, mother and

daughter and soccer (see [43]).

To define realistic DRASTIC constraint profiles, we need

to select profiles that are compatible with the pareto front

(see Fig. 8). Given the wide applications of the UT LIVE

image quality databases, we expect that the values derived

from them will be widely applicable. In general, we can see

that we can achieve higher values of image quality by

allocating higher bitrate and larger values of dynamic

power. To understand this trend, note that higher image

quality results from the need to compute higher-frequency

components and longer word lengths that result in higher

dynamic power. Furthermore, storing the higher-frequency

components requires additional bits that raise the number of

bits per sample. Realistically, image quality bounds need to

have SSIM values about 0.7 to maintain a minimum level of

acceptable image quality. This discussion leads to the low,

medium, and high profiles given in Table 3.

The efficient implementation of the DRASTIC modes

requires that we determine optimal parameters forRecC and

RecP so as to minimize the reconfiguration overhead while

still providing acceptable performance. We investigate the

trade-off between RecC and RecP by considering all

DRASTIC modes for (1) periodic update control usingRecP

= 1, 5, 10, while allowing the maximum number of recon-

figurations perRecDur ¼ 100 frames usingRecC= 100, and

(2) initial adaptation control using RecC = 5, 10, 100, while

allowing the maximum number of periodic updates using

RecP = 1. The results are summarized in Figs. 11 and 12.

For the typical mode plots of Fig. 12, it is clear that the

constraints are met for all profiles. In other words, for most

configurations, image quality remains above the minimum

levels, while dynamic power and required bitrates remain

below the bounds. For all of the other modes, only two of

Table 2 A comparison of FPGA implementations of 2D DCTs

Tumeo et al.

[44]

Huang et al.

[9]

Madanayake

et al. [35]

Sharma et al.

[45]

Yuebing and

Pattichis [6]

Proposed

Arch. Single 1D DCT

? ping pong

TRAM

8 PE ?

TRAM

2 AI-DCT

? TBuffer

DA based

structure

Double 1D DCT?

TRAM

Double 1D DCT? ping

pong TRAM

Slices 2,823 2,944 (8

PEs)

2,377–3,618 1,701 807–1,657 257–1,686

Tech. Xilinx

Virtex II

XC2VP30

Xilinx

Virtex 4

XC4VSX35

Xilinx

Virtex 6

XC6VLX240T

Xilinx

Virtex II

XC2VP30

Xilinx

Virtex 5

XC5VLX110T

Xilinx

Virtex 5

XC5VLX110T

Latency (cycles) 160 N/A N/A N/A 22 20

8� 8 throughput

(cycles)

64 25–102 N/A N/A 16 8

Dyn. Power (mW) N/A 24.03–26.27 897–1,687 751 85.2–203.19 51–683

Max. freq. (MHz) 107 N/A 123–308 45.17 200–275 157–251

Oper. freq. (MHz) N/A 41.79 123–308 45.17 100 100

Dynamic power results are estimated for the operating frequency. Given the small number of cycles required by the proposed approach, it is clear

that the proposed method yields the most energy efficient approach. For our experiments, we used a Virtex-5 XC5VLX110T device. The FPGA

architecture consists of an array of configurable cell blocks (CLBs) of 160� 54 CLBs, 17;280 slices (see http://www.xilinx.com/support/

documentation/data_sheets/ds100.pdf)

Table 3 DRASTIC constraint profiles

DRASTIC constraint Constraints profile

Low Medium High

Image quality (SSIM) 0.7 0.8 0.9

Bitrate (bits per sample) 0.5 1.0 1.5

Power (mW) 200 300 400

The constraints represent the bounds for (1) image quality (Qmin), (2)

the bitrate (Bmax), (3) and dynamic power (Pmax) as described in Sect.

3.1
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(b) Minimum Power Mode, recP=1.
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(c) Minimum Rate Mode, recC=100.
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(d) Minimum Rate Mode, recP=1.
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(e) Maximum Quality Mode, recC=100.
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(f) Maximum Quality Mode, recP=1.

Fig. 9 DRASTIC performance for the minimum power, maximum

image quality, and minimum rate modes as a function of the

reconfiguration period RecP and the number of reconfigurations

RecC. The box plots indicate the median (central line), while box

edges represent the 25th and 75th percentiles, whiskers show the

extremes of the distribution and outlier points are plotted using plus

symbol
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the three constraints are active, while the remaining con-

straint becomes an objective to be optimized. For example,

for the maximum image quality mode demonstrated in Fig.

11e, f, it is clear that we have substantially higher image

quality that the typical mode, which can push dynamic

power consumption slightly above the constraints. On

average though, it is clear that most constraints are met for

the non-typical modes. Since the validation is independent

of the training set, we can infer that the pareto front from

the UT LIVE image database captured the constraints in

more general settings.

The use of larger reconfiguration periods (larger RecP)

tends to spread out the distributions of the objectives. With

larger spreads, we also get an increase in constraint vio-

lations. On the other hand, when reconfiguring after each

frame (RecP = 1), the number of reconfigurations (RecC)

does not seem to provide significant improvements for

larger values (1 to 5 to 100). Thus, by allowing an early

adaptation to the input video using RecP ¼ 1, and then

limiting the number of dynamic reconfigurations

(RecC ¼ 5), we have an effective control of the overhead

while still producing distributions that are centered on the

desired constraints. At this setting with RecDur ¼ 100, we

only reconfigure at 5 % of the input frames, providing a

significant reduction in the overhead.

To demonstrate the overall advantages of the proposed

DRASTIC modes, we provide a comparison against the use

of static configurations in Table 4. For the static configu-

ration, we select the one with the maximum performance

metric. For example, for the maximum image quality

mode, we select the configuration that gave the maximum

image quality among all video frames. Compared to the

optimized static configuration, at only 5 % reconfiguration

rate, we still get significant savings in dynamic power

(25–37 %), bitrate (47–55 %), while reducing image

quality from the maximum mode by very low percentages

(3–6 %). Full reconfiguration can provide additional sav-

ings for the non-typical modes.

4.3 DRASTIC mode transition example

We consider a simple mode transition example over a

video consisting of 100 frames. The transitions are pro-

vided as a means to demonstrate the capabilities of the

system. The users can specify arbitrary transitions. Here,

we restrict our attention to the following:

– Max im. qual. mode with high profile (n ¼ 1; . . .; 25):

This mode is motivated by the need for the users to

review video contents to see if there is something

interesting. So, we use a maximum image quality for

this initial mode.

– Typical mode with medium profile (n ¼ 26; . . .; 50):

After adapting to the video, a transition to a typical

mode is considered here.

– Min rate with medium profile (n ¼ 51; . . .; 75): In a

limited bandwidth environment, a minimum rate mode

is considered.

– Min power with low profile (n ¼ 76; . . .; 100): The

need to support operations over longer periods moti-

vates the transition to a minimum power mode as the

final mode.
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Fig. 10 DRASTIC performance for the typical mode as a function of the reconfiguration period RecP and the number of reconfigurations RecC
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By setting RecDur ¼ 25, the proposed algorithm can

respond to requirement mode transitions very rapidly.

From the DRASTIC mode transitions of Fig. 9, it is clear

that the dynamic reconfiguration works well. The basic

idea of adjusting to the input video at the beginning of the

mode does allow the system to meet the constraints. Also,

from the video images of Fig. 10, we can see exceptional

image quality for the maximum image quality mode (Fig.

10a), acceptable quality for the typical mode (Fig. 10b),

reduced quality for the minimum rate mode (Fig. 10c), that

reduces to barely acceptable quality for the minimum

power mode (Fig. 10d). In terms of dynamic power con-

sumption, it is interesting to note that the typical mode with

a medium profile requires only slightly more power than

the minimum power mode with a low profile.

Overall, in all of our experiments, we have found that

the DRASTIC controller can adapt quickly to mode

changes. After a mode change, it takes up to five frames for

the DRASTIC controller adjust to meet the new constraints

that come with the new mode.
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5 Conclusion and future work

The paper has introduced DRASTIC modes to allow for

fine optimization control for maximizing image quality,

minimizing bitrate requirements, reducing dynamic

power consumption, or providing a typical mode that

balances constraint requirements. An efficient and scal-

able architecture based on the 2D DCT was used for

implementing the DRASTIC modes. From the results, it

is clear that the use of DRASTIC can lead to significant

power and bitrate savings over optimized static approa-

ches. Furthermore, the dynamic reconfiguration overhead

can be minimized by reducing the reconfiguration rate

(5 % or less).

Future work will be focused on extending the DRASTIC

approach to other video processing and communications

Fig. 12 DRASTIC mode transition example results. a Max img qual.

mode ðn ¼ 5Þ: SSIM = 0.95, rate = 1.36 bps, DP = 395 mW which

gives exceptional image quality while meeting the high profile

constraints. b Typical mode ðn ¼ 35Þ: SSIM = 0.84, rate = 0.51 bps,

DP = 161 mW which meets all of the medium profile constraints at a

much lower bitrate. c Min rate mode ðn ¼ 60Þ: SSIM = 0.79, rate =

0.31 bps, DP = 312 mW which is right at the boundary of the image

quality and dynamic power constraints (medium profile) while using

significantly less bitrate. d Min power mode ðn ¼ 85Þ: SSIM = 0.69,

rate = 0.18 bps, DP = 100mW which is at the boundary of the image

quality constraint for the low profile, unable to further reduce power,

but still operating at a very low bitrate
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applications. Furthermore, future work will look at meth-

ods to generate constraints dynamically based on video

content.
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