Vivado Design
Suite Tutorial

Partial Reconfiguration on

Zed Board

*This document is based on the Xilinx document UG947: Vivado Design Suite Tutorial on Partial Reconfiguration

Table of Contents

(0 0 =T o611 RO 2
Vivado Partial Reconfiguration - DOCUMENTAtiONcevveuieiiiieieiiieiteitcctccrceee s 2
LIV o 5 T OO 2
3.1 LEd SRt COUN.autrerireteereererreeeentreteneerseessneseneeseesseesssesssessstosstosssassassssessnsssnsesssssssasssassssssnsssnsosss 2
3.1.1 Extract the Tutorial Design files ...ttt 2
3.1.2 SYnthesize the DeSIZN....uuiiiiiiieiieteictetctt e 2
3.1.3 Assemble the DeSigN ...t 3
3.1.4 Build the Design FIOOrPIancveeeiiiiietiiiietetcicictccccet s 6
3.1.5 Implement the First Configurationccceeveeeicieiiiniciciciicccccee 8
3.1.6 Implement the Second Configurationcceeveeeveeeicinicinicinicccccae 10
3.1.7 Generate BitStreamsS ..ttt 10
3.1.8 Partial Reconfiguration of the FPGA.........coiiiiiiiieitctctetcttce e 1
1|Page Partial Reconfiguration

on Zed Board

1 Objectives

e Implement a project that can be dynamically reconfigured using the Zed Board.
e Learn the Partial Reconfiguration (PR) flow with the Vivado TCL console.

2 Vivado Partial Reconfiguration - Documentation

e UG909: Vivado Design Suite User Guide - Partial Reconfiguration.

e UG947: Vivado Design Suite Tutorial — Partial Reconfiguration. You can follow this for the
Xilinx-provided ug947-vivado-partial-reconfiguration-tutorial.zip file (this is a Verilog design for
the KC705 demonstration board)

3 Tutorial
3.1 Led Shift Count

3.1.1 Extract the Tutorial Design files

e Extract the zip file contents from Dynamic_PR_Tutorial to any write-accessible location.

3.1.2 Synthesize the Design

e Open the Vivado TCL Shell. Navigate to the /led_shift_count directory.

e Run the design.tcl script by entering: source design.tcl —notrace. This will Synthesize the
design and create output files in the /[Synthesis folder. The ‘top’ design will be created with a
blank circuit for the Reconfigurable Partition.

Uivado v2815.2 (64-hit)
ok Sl Build 1266856 on Fri Jun 26 16:35:25 MDT 2@15
woee [P Build 1264898 on Wed Jun 24 14:22:01 MDT 2015
% Gopyright 1986-2815 Kilinx, Inc. A1l Rights Reserved.

ivadoy cd E:/Grad_Project/led_shift_count
ivado source design.tcl -notrace

Fig 1. Vivado TCL Shell

2|Page Partial Reconfiguration
on Zed Board

3.1.3 Assemble the Design

3]

Open the Vivado IDE by entering start_gui in Vivado TCL Shell.

BN Vivado 2015.2 Tcl Shell - EAKiling Vivade'2015.2\bin\wvivado.bat -mode tcl o || =P || 22

on Sat Feh 86 14:03:45 2816. For additional details about this file, please ref|®

er to the WehTalk help file at E:/Xilinx~Uivado-20815.2/docswebtalk_introduction.

html.

INFO: [Common 17-2061 Exiting Webhtalk at Sat Feb 86 14:83:45 28i6...

cloze_project: Time C(z): cpu = BO:00:80 ; elapsed = BB:B8:46 . Memory (MB): peak
= 529.230 ; gain = B.0088

H#HD: Synthesiz of module Static complete

#HD: Running synthesiz for hlock shift_right
Writing results to: ./Synthsshift_right
#HD: Setting Tcl Params:
hd.vizual ==
Info: No BDC file specified for shift_right
Running synth_design
: Synthesis of module shift_right complete

m

: Running synthesis for bhlock shift_left
Weriting results to: ./Synthrsshift_left

: Setting Tcl Params:
hd.vizwal == 1
Info: Mo BDC file specified for shift_left
Running synth_design

: Synthesis of module shift_left complete

* Running synthesis for block count_up
Writing results to: ./Synth/count_up

: Setting Tcl Params:
hd.vizual ==
Info: Ho KDC file specified for count_up
Running synth_design

: Syntheszis of module count_up complete

: Running synthesis for block count_doun
Uriting results to: . Synth/count_down

: Setting Tcl Params:
hd.visual ==
Info: No BDC file specified for count_down
Running synth_design

: Synthesis of module count_down complete

: Sorted list of configurations:
Conf ig_shift_right_count_up
(8tatic: implement Implement: @ Uerify: @
m: @)
Config_szhift_left_count_douwn
(8tatic: import Implement: @ Uerifuy: @
m: B>

Skipping pr_verify for Configuration Config_shift_left_count_down with a
ttribute "werify" set to ‘6’

Skipping write_hitstream for Configuration Config_shift_right_count_up w
ith attribute “hbitstream" szet to 'B°

Skipping write_bitstream for Configuration Config_shift_left_count_down
with attribute “bitstream" zet to '8°
Vivadox start i &

Fig 2. Vivado TCL Shell after sourcing the design.tcl file

Load the static design by issuing the following command in the Tcl Console:

open_checkpoint Synth/Static/top_synth.dcp

-

!

S

g

top_route_design.dcp

m

Manage I Open Hardware Manager Xilinx Td St mplement/onng_shiTt_IeTt_coun
i top_route_design.dcp
. — . mplement/Config_shift_right_cou -
Td Console — O =& =
Z_ {Static: implement Implement: Verify: O Bitstream: 0) <
gy Config shift left_ count down
Ii] {Static: import Implemsent: Werify: O Bitstream: 0)
]
=:.] Skipping pr_wverify for Configuration Config shift left count_down with attribut
Skipping write_bitstream for Configuration Config shift right count_up with att
)(Skipping write_bitstream for Configuration Config shift left count down with at—
Viwvado% start_gui =
Fl [TT1 r
I open_checkpoint Synth/Static/top_synth.dcp
Fig 3. Vivado TCL Console
Fie Edt Fow Tooks Window Layout ¥iew Help
a A5 G Q |G |2 oefutLayot v]
(Checkpoint Design - xc72020dg484 1 X
Netlist In LS Device x O x
=53
i op
-5 Nets (162
) Leaf Cells
-4 inst_count
- inst_shift (¢
Properties R 4
14}
Td Consale - O x
;X_f INFQ: [Project 1-570] Preparing netlist for logic optimization A
| | CF o
=2} .
UU INFO: [Project 1-111] Unisim Transformation Summary:
ﬁ‘ No Unisim elements were tranaformed.
=ﬁ INFQ: [Project 1-484] Checkpoint was created with build 1266856
X open_checkpoint: Time (s): cpu = 00:00:30 ; elapsed = 00:00:19 . Memory (MB): peak = 1253.305 ; gein = 120.289
checkpoint_top synth E
4 m 3
2 Tcl Console | () Messages

Fig 4. Vivado after opening the Checkpoint

4|Page

Partial

Reconfiguration
on Zed Board

o You can see the design structure in the Netlist pane, but black boxes exist for the
inst_shift andinst_count modules. Note that the Flow Navigator pane is not present.
You are working in non-project mode.

o Two critical warnings are issued regarding unmatched instances. These instances are
the Reconfigurable Modules that have yet to be loaded, and you can therefore ignore
these warnings safely.

e Load the synthesized checkpoints for first Reconfigurable Module variants for each of
reconfigurable partitions:

read_checkpoint -cell inst_shift Synth/shift_right/shift_synth.dcp

read_checkpoint -cell inst_count Synth/count_up/count_synth.dcp

Fle Edt Fow Tools Wndow Layout View Help
'# Y & A \:‘,: @ 5‘ % | 5 Default Layout - £

Checkpoint Design - xc7z020clg484- 1 X

Nethist _gowyx & Device X —y
z HE

5 top

B3 Nets (162

05 Leaf Cells (22

-] inst_count (count
3] inst_shift (shift

Properties Oy x

i}
Td Console -0Ouex
Z: INFQ: [DRC 23-27] Running DRC with 2 threads o

iy INFQ: [Project 1-461] DRC finished with 0 Errors
INFO: [Project 1-462] Please refer to the DRC report (report_drc) for more information.
[I[I INFQ: [Opt 31-138] Pushed 0 inverter(s) tc 0 load pin{(a).
-pi\ INFQ: [DRC 23-27] Running DRC with 2 threads
5\ INFO: [Project 1-461] DRC finished with 0 Errors
INFO: [Project 1-462] Please refer to the DRC report (report_drc) for more information.
X INFQ: [Opt 31-138] Pushed 0 inverter(s) te 0 load pin(s).
checkpoint_top_synth

+ [

« T b

|2 Tel Console |) Messages

Fig 5. Read Checkpoints

e Define each of these submodules as partially reconfigurable by setting the
HD.RECONFIGURABLE property:

set_property HD.RECONFIGURABLE 1[get_cells inst_shift]
set_property HD.RECONFIGURABLE 1[get_cells inst_count]
e Save the assembled design state for this initial configuration:

write_checkpoint ./Checkpoint/top_link_right_up.dcp

5|Page Partial Reconfiguration
on Zed Board

3.1.4 Build the Design Floorplan

Here, you create a floorplan to define the regions that will be partially reconfigured.

e Selecttheinst_countinstance in the Netlist pane. Right click and select: Floorplanning > Draw
Pblock and draw a tall narrow box. The exact size and shape do not matter at this point, but

keep the box within the clock region.

Fig 6. Draw Pblock for inst_count
e Inthe Properties pane, select the checkbox for RESET_AFTER_RECONFIG. This will utilize the
dedicated initialization of the logic in this module after reconfiguration has completed .

Properties

& > 55

1) pblock_inst_count

CELL_COUNT

CLASS pblock

CONTAIN_ROUTING W

o
ey

wit | 1B B4

Lk

EXCLUDE_PLACEMENT v
GRIDTYPES SLICE RAMB 18 RAME 36

’.QX

MNAME pblock_inst_count
PARENT ROCT
PARTPIM_SPREADING

PRIMITIVE_COUNT

RECTANGLE_COUNT

DERIVED_RAMNGES RAME36_X2Y11:RAMB356_X2Y18, RAMB18_X2Y22:RAMB13_X2Y37, SLICE_X30Y52:5LICE...

GRID_FAMGES RAMB36_X2Y11:RAMB356_X2Y 18, RAMB18_X2Y22:RAMB13_X2Y37, SLICE_X30Y52:5LICE. ..

72

SNAPPING_MODE

General | Properties | Statistics | Cells | Connectivity | Rectangles

Fig 7. Set Reset after Reconfiguration

6|Page Partial

Reconfiguration

on Zed Board

e Repeat the above to steps for inst_shift instance.

Fig 8. Draw Pblock for inst_shift
e Run PR Design Rule Checks by selecting Tools >Report >Report DRC. You can uncheck All Rules
and then check Partial Reconfiguration to focus this report strictly on PR DRCs.

Chedk design against selected rule decks andfor individual design
rules.

Results name: |drc_1
Output file:]

Rule Decks
fzf =] Vivado Rule Decks (2]

A: bitstream_checks
= default

eco_checks
incr_eco_checks
methodology_checks
opt_checks
placer_checks
router_checks
timing_checks

PS5 1]

Pin Planning

Clocking {1

Memory (51]

XDC (14

Floorplan (2]
Implementation {35
Flacer {134

Hierarchical Design {1]

- [5F] Partial Reconfiguration (53]
Timing {22] =

m

BERREREDEEE S

| Open in a new tab

[Ok] | Cancel |

Fig 9. Report DRC

7|Page Partial Reconfiguration
on Zed Board

To avoid the DRC warning automatically by setting the SNAPPING_MODE feature which
automatically adjusts the size and shape of reconfigurable Pblocks to align with legal
boundaries. It will make the Pblock taller, aligning with clock region boundaries, if the
RESET_AFTER_RECONFIG feature is selected. It will make the Pblock narrower, adjusting left
and/or right edges as needed. Note that the number and type of resources available will be
altered if SNAPPING_MODE makes changes to the Pblock.

Pblock Properties —_ O a =

« [P35

(@) phlodk_inst_shift

CELL_COUNT 1
CLASS pblock

COMTAIN_ROUTING

DERIVED _R.AMGES RAME36_X5YD:RAME36_X5Y9, RAMB15_X5YD:RAME158_X5Y 19, DSP43_X4Y0:DSP48_X4Y...
EXCLUDE_PLACEMENT

GRIDTYPES SLICE DSP43 RAMB 18 RLAME 36

GRID_RAMGES RAME36_X5YD:RAME36_X5Y8, RAMB15_X5YD:RAMB153_X5Y 17, DSP43_X4Y0:DSP48_X4Y...
MNAME pblock_inst_shift

PARENT ROCT

PARTPIM_SPREADING 5
PRIMITIVE_COUNT 5
RECTAMNGLE_COUNT il
RESET_AFTER _RECONFIG

Cswermorooe |

@ X | b B P

General | Properties | Statistics | Cells | Connectivity | Rectangles

Fig 10. Set Snapping mode
Select the Pblock for inst_count, and in the Properties tab of the Pblock Properties pane,
change the value of SNAPPING_MODE from OFF to ROUTING (or ON). Repeat same for
inst_shift instance. Then Run PR Design Check again.
Save these Pblock definitions and its associated properties ona . xdc file:

write_xdc ./Sources/xdc/fplan.xdc

3.1.5 Implement the First Configuration

e Load the top-level constraint file by issuing the command:
read_xdc Sources/xdc/top_io.xdc

e Optimize, place, and route the design. Notice the Partition Pins (interface points between
static and dynamic regions)
opt_design
place_design
route_design

8|Page Partial Reconfiguration

on Zed Board

e Save the full design checkpoint and create report files:
write_checkpoint -force Implement/Config_shift_right_count_up/top_route_design.dcp
report_utilization -file Implement/Config_shift_right_count_up/top_utilization.rpt

report_timing_summary -file
Implement/Config_shift_right_count_up/top_timing_summary.rpt

At this point, you can use the static portion of this configuration for all subsequent configurations
(variants of the circuit with different RMs for each RP). We need to isolate the static design by
removing the Reconfigurable Modules:

e (lear out Reconfigurable Module logic:
update_design -cell inst_shift -black_box
update_design -cell inst_count -black_box

Fig 11. Updated design
e Lock down all placement and routing. This is an important step to guarantee consistency for
different RMs for each RP.

lock_design -level routing

e Write out the remaining static-only checkpoint (this checkpoint will be used for any future
configurations).

write_checkpoint -force Checkpoint/static_route_design.dcp

9|Page Partial Reconfiguration
on Zed Board

3.1.6 Implement the Second Configuration
e Withthelocked static design openin memory, read in post-synthesis checkpoints for the other
two Reconfigurable Modules.
read_checkpoint -cell inst_shift Synth/shift_left/shift_synth.dcp
read_checkpoint -cell inst_count Synth/count_down/count_synth.dcp
e Optimize, place, and route the design. Notice the Partition Pins (interface points between
static and dynamic regions)
opt_design
place_design
route_design
e Save the full design checkpoint and create report files:
write_checkpoint —force Implement/Config_shift_left_count_down/top_route_design.dcp
report_utilization -file Implement/Config_shift_left_count_down/top_utilization.rpt
report_timing_summary -file
Implement/Config_shift_left_count_down/top_timing_summary.rpt
e At this point, you have implemented the static design and all Reconfigurable Module variants.
This process would be repeated for designs that have more than two Reconfigurable Modules
per RP, or more RPs. Close the current design:
close_project
3.1.7 Generate Bitstreams
e Runthe pr_verify command from the Tcl Console:
pr_verify Implement/Config_shift_right_count_up/top_route_design.dcp
Implement/Config_shift_left_count_down/top_route_design.dcp
e Read the first configuration into memory:
open_checkpoint Implement/Config_shift_right_count_up/top_route_design.dcp
e Generate full and partial bitstreams for this design.
write_bitstream -force -file Bitstreams/Config_RightUp.bit
close_project
10|Page Partial Reconfiguration

on Zed Board

¢ Notice the three bitstreams have been created:
o Config_RightUp.bit - This is the power-up, full design bitstream.
o Config_RightUp_pblock_inst_shift_partial.bit - This is the partial bit file for the
shift_right module.
o Config_RightUp_pblock_inst_count_partial.bit - This is the partial bit file for the
count_up module.
e Read the Second configuration into memory:

open_checkpoint Implement/Config_shift_left_count_down/top_route_design.dcp
e Generate full and partial bitstreams for this design.

write_bitstream —force -file Bitstreams/Config_LeftDown.bit

close_project

e Generate a full bitstream with a blackbox for the RP, plus blanking bitstreams for the RMs,
these can be used to erase an existing configuration to reduce power consumption:

open_checkpoint Checkpoint/static_route_design.dcp
update_design -cell inst_count -buffer_ports

update_design -cell inst_shift -buffer_ports

place_design

route_design

write_checkpoint —force Checkpoint/Config_black_box.dcp
write_bitstream —force -file Bitstreams/config_black_box.bit
close_project

3.1.8 Partial Reconfiguration of the FPGA

e From the main Vivado IDE, select Flow>Open Hardware Manager.
g Vivado 2015.2

File | Flow | Tools Window Help

@* Open Hardware Manager

VIVADO! recuciny

Quick Start

Fig 12. Open Hardware Manager

1n|Page Partial Reconfiguration
on Zed Board

e Select Open Target >open new target on the green banner. Follow the steps in the wizard to
establish communication with the board.
. Vivado 2015.2

File Edit Flow Tools Window Layout View Help Q- se
if@l“ﬂg}h)‘(l%lk} 12 pefault Layout - ﬁ&klﬂ

| Hardware Manager - unconnected

@ Mo hardware target is open. Open target

Hardware ﬁ. Auto Connect

o T=HE pv»HE Recent Targets

& Open Mew Target...

Mo content

M
s

Properties |
i 2 ol b

Fig 13. Open New Target

e Select Program device on the green banner and pick the xc7z020_1. Navigate to the Bitstreams
folder to select Config_RightUp.bit, then click OK to program the device.

e Youshould now see the bank of GPIO LEDs performing two tasks. Four LEDs are performing a
counting-up function (MSB is on the left), and the other four are shifting to the right. Note the
amount of time it took to configure the full device.

At this point, you can partially reconfigure the active device with any of the partial bitstreams that
you have created.

e Select Program device on the green banner again. Navigate to the Bitstreams folder to select
Config_LeftDown_pblock inst_shift_partial.bit, then click OK to program the device.

o The shift portion of the LEDs has changed direction, but the counter kept counting up,
unaffected by the reconfiguration. Note the much shorter configuration time.

e Select Program device on the green banner again. Navigate to the Bitstreams folder to select
Config_LeftDown_pblock inst_count_partial.bit, then click OK to program the device.

o The counter is now counting down, and the shifting LEDs were unaffected by the
reconfiguration. This process can be repeated with the Config_RightUp partial bit files
to return to the original configuration, or with the blanking partial bit files to stop
activity on the LEDs (they will stay on).

*This document is based on the Xilinx document UG947: Vivado Design Suite Tutorial on Partial Reconfiguration

12|Page Partial Reconfiguration
on Zed Board

