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Abstract— The manuscript describes fast and scalable archi-
tectures and associated algorithms for computing convolutions
and cross-correlations. The basic idea is to map 2D convolutions
and cross-correlations to a collection of 1D convolutions and
cross-correlations in the transform domain. This is accomplished
through the use of the discrete periodic radon transform for
general kernels and the use of singular value decomposition
-LU decompositions for low-rank kernels. The approach uses
scalable architectures that can be fitted into modern FPGA
and Zynq-SOC devices. Based on different types of avail-
able resources, for P × P blocks, 2D convolutions and cross-
correlations can be computed in just O(P) clock cycles up
to O(P2) clock cycles. Thus, there is a trade-off between
performance and required numbers and types of resources.
We provide implementations of the proposed architectures using
modern programmable devices (Virtex-7 and Zynq-SOC). Based
on the amounts and types of required resources, we show that the
proposed approaches significantly outperform current methods.

Index Terms— Linear convolution, circular convolution, cross-
correlation, discrete periodic radon transform, parallel architec-
ture, scalable architecture, FPGA, SOC.

I. INTRODUCTION

CONVOLUTIONS and cross-correlations have wide
applications in image and video processing and

imaging [1], [2]. The development of effective architec-
tures and algorithms for computing convolutions and cross-
correlations can be used in several applications (e.g., feature
extraction [3], template matching [4], pattern recognition [5],
edge detection, filtering, deconvolution, segmentation, and
denoising [1]).

To support implementations in modern devices (e.g.,
FPGAs, PSOCs), we are also interested in scalable architec-
tures. The basic idea is to make efficient use of hardware
resources to deliver the best possible performance. For scala-
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bility, we investigate implementations that can be fitted within
available resources.

A standard approach for developing efficient architec-
tures for 2D convolutions and cross-correlations would be
to build the systems based on 2D FFTs. As is well-known
(e.g., see [6], [7]), for sufficiently large kernels, the use of
2D FFTs will give better results than direct approaches. Unfor-
tunately, the direct implementation of 2D FFTs in hardware
requires the use of complex-valued arithmetic units. As a
result, the hardware scalability of using 2D FFTs is funda-
mentally limited by the number of 1D FFT processors that can
be fitted in any given hardware device. We refer to [8]–[10]
for details of the latest implementation of this approach.
As shown in [8], performance can be improved by including
up to 4 1D FFT processors. Beyond 4 1D FFT processors,
performance stalls or even degrades due to I/O issues [8].

Modern FPGA and SOC devices are equipped with DSPs
that can better facilitate the implementation of 2D FFTs. Thus,
in modern FPGAs and SOCs, the scalability of the FFT-based
methods is largely limited by the number of available DSPs.
To provide fair comparisons, for our FPGA and SOC imple-
mentations, we compare our proposed approaches against the
use of DSPs in FFT-based methods.

The development of O(P) methods for 2D convolutions
also poses significant I/O issues. For example, a sequential
access through the pixels will require O(P2) clock cycles.
In our proposed designs, we use parallel loads and stores that
can move entire rows and columns of blocks of P-pixels into
an array of registers in a single clock cycle. Furthermore, we
rely on the use of parallelism and pipelined designs to ensure
that each row of pixels is also processed in O(P) clock cycles.

The number of clock cycles to compute the 1D FFT can be
reduced from O(P log2 P) to O(P) using a fully-pipelined
and parallel hardware implementation as documented in [10].
To provide fair comparisons, we will also consider 2D exten-
sions of this work. Overall, due to the need to implement
complex arithmetic operations for this approach, we have
found that actual hardware resources remain relatively high
for many reasonable values of P .

Alternatively, two-dimensional convolutions and cross-
correlations can also be computed in the transform domain
using the 2D Discrete Periodic Radon Transform (DPRT).
The DPRT can be computed using summations along dif-
ferent directions [11], [12]. Similar to the FFT, the DPRT
approach requires that we first take the DPRT of the
image and the 2D kernel. Then, along each DPRT direc-
tion, we compute 1D circular convolutions/cross-correlations
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between the DPRTs of the image and the 2D kernel. The
2D convolution/cross-correlation result can then be computed
by taking the inverse DPRT of the previous result. Unlike the
2D FFT approach, the DPRT can be implemented with real-
valued fixed-point additions. Furthermore, as shown in [12],
we now have fast and scalable fixed-point architectures that
can be implemented in FPGAs or SOCs that can compute
DPRTs in O(P) to O(P2) clock cycles depending on available
hardware resources.

To implement fast and scalable convolutions and cross-
correlations based on the DPRT, we also need to com-
pute the separable 1D convolutions/cross-correlations in
O(P) and O(P2) clock cycles and address I/O issues when
connecting with the DPRT blocks. For the fastest approach,
we develop FastConv and FastXCorr based on the fast
DPRT that can compute convolutions/cross-correlations in
O(P) clock cycles. Similarly, we develop FastScaleConv and
FastScaleXCorr based on the scalable DPRT.

To provide balanced comparisons to other approaches,
we also discuss resource requirements. Here, we restrict our
discussion to the numbers of required additions, multipliers,
and flip-flops. In general, we will classify and approach as
one of requiring O(P2) or O(P3) resources if the number of
additions, multipliers, or flip-flops grows as O(P2) or O(P3)
respectively. We will provide more detailed comparisons in
terms of the exact numbers of additions, multipliers, or flip-
flops, DSPs, and other types of resources in a later section of
the paper.

We also define scalability based on available resources.
We are interested in convolution systems that can be scaled so
as to fit into different device sizes. Then, the fastest methods
refer to approaches that can compute 2D convolutions using
the minimum number of clock cycles while requiring the
maximum amount of resources. On the other hand, slower
implementations will require fewer resources. Thus, we have
a clear trade-off between performance and required resources.

In addition to comparisons against FFT based methods,
we also consider spatial-domain methods based on systolic
arrays [13]. The standard systolic array implementation of
1D convolutions computes an output every clock cycle. With-
out using separability, a direct extension of the 1D systolic
array approach requires that we keep several image rows
in memory [14], [15]. As a result, the application of non-
separable systolic array implementations has been limited
to relatively small kernels. Furthermore, a derivation of a
O(P) clock cycles approach based on systolic approaches
leads to prohibitive hardware resource growth of O(P3) [14].
In comparison, hardware resourses in all of our proposed
methods only grow as O(P2) or less.

In the spatial domain, we also have the relatively recent
emergence of fast convolution using a sliding window [16].
At each image pixel, a sliding window of the same size as the
kernel is applied to compute one output pixel of the convolved
image [17]. This comes at a cost of using as many multipliers
and adders as the coefficients in the kernel, and thus grows
linearly with the number of coefficients in the kernel.

We also develop FastRankConv, a second family of fast
and scalable architectures that represents an extension of the

current systolic methods. Our approach is based on the use of
separable approximations of non-separable kernels [18], [19].
The basic idea is to express non-separable kernels as a sum
of of a small number of separable kernels. Then, scalable
hardware implementations can be derived by controlling the
number of efficient 1D processors.

Overall, we describe and implement two fast methods for
computing 2D convolutions in O(P) clock cycles. Both meth-
ods map 2D convolutions into a collection of 1D convolutions
that are computed in O(P) clock cycles. Each 1D convolution
is computed in parallel using a row of multipliers followed by
an adder tree. For FastRankConv, we approximate the 2D con-
volution kernel using a minimal number of 1D kernels that
are applied along each row and each column. For FastConv
and FastScaleConv, we first take the DPRT in O(P) clock
cycles using the fast DPRT, compute the 1D convolutions in
the transformed domain, and then take the inverse DPRT in
O(P) clock cycles using the inverse DPRT.

We summarize the primary architectural elements of our
design:

• An array of circular-shift-registers: The image data is
processed using an array of circular shift registers.

• Fast memory: The memory array is implemented using
a row of SRAMs where each SRAM stores a column of
the image.

• Row-level parallel I/O: The scalable architectures load
the image into memory using a sequence of parallel loads
of rows of pixels. Thus, for an image with N rows, we can
load the entire image into memory in N cycles.

• Row-level parallel and pipelined processing: The pro-
posed scalable architectures are designed to process mul-
tiple rows at the same time. Thus, for FPGA and SOC
implementations, the idea is to implement as many row-
processing units as we can fit in the device. Then, each
row-processor uses a pipelined architecture that produces
results after each cycle after an initial latency.

• Fast transpositions: We significantly reduce the transpo-
sition overhead using an additional output memory array.
The output memory array uses dual-port memories to
allow us to write the output results and read intermediate
values at the same time. Based on our proposed approach,
we can read and write rows and columns in a single cycle
as needed. Overall, in our pipelined design, the net effect
is that transposition is performed during computation and
will thus not require any additional cycles.

The scalability characteristics of our proposed architectures
include:

• Performance scalability by controlling the number of
row-processors in the DPRT and the 1D convolutions/
cross-correlations: We refer to [12] for the scalable
DPRT implementation.

• Pareto optimality: We present Pareto-optimal designs
in the sense that our family of architectures provide
the fastest implementations based on available resources.
In other words, additional resources always yield faster
performance.

• Fast 2D convolutions and cross-correlations:
FastConv and FastXCorr compute convolutions and
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cross-correlations for P × P blocks in O(P). For large
images, the image can be broken into L separate blocks
of size P × P and use an overlap-and-add approach
to compute the final results. Thus, in the fastest case,
we can compute convolutions and cross-correlations
in just O(L · P) clock cycles. On the other hand, in
the worst case scenario, with very limited resources,
2D convolutions and cross-correlations can be computed
in O(L · P2) clock cycles. Here, we use the term large
image to refer to image sizes that require more on-chip
resources than what is available.

The rest of the manuscript is organized as follows. The
mathematical definitions for the DPRT, its inverse, and the
transformation property of the DPRT are given in section II.
The proposed approach is given in section III. Section IV
presents the results. Conclusions and future work are given
in section V.

II. BACKGROUND

A. Basic Notation

Let g(i, j) denote an image (or image block) of P1 rows
with P2 pixels per row be of size P1×P2 with B bits per pixel.
We index g(i, j) using 0 ≤ i ≤ P1 − 1 and 0 ≤ j ≤ P2 − 1.
We use h to denote the convolution kernel and assume a size
of Q1×Q2 with C bits per pixel. We use f (i, j) for the output
of size N1×N2 where N1 = P1+Q1−1 and N2 = P2+Q2−1.
For the case when N1 = N2 and P1 = P2, we simply use
N and P throughout the text.

Typically, images tend to be much larger than the convo-
lution or cross-correlation kernels. In such cases, the input
image g will be broken into blocks that are equal to the size
of the kernel. Thus, in the most typical scenario, we assume
that the image and kernel blocks are of size P × P . After
linear convolution, the output image block is of size N × N
where N = 2P − 1. To compute outputs over the entire
image, we break the image into non-overlapping blocks and
use overlap-and-add to produce the final results.

B. Separable Decomposition for Non-Separable Kernels
We begin with the 2D Z-transform of the convolution

kernel h:

H (z1, z2) =
Q1−1∑

i=0

Q2−1∑

j=0

h(i, j)z−i
1 z− j

2 . (1)

To allow for separable decompositions, we consider a matrix
re-formulation of (1) [19]:

H (z1, z2) = Z1
T H Z2 (2)

where we have placed all of the filter coefficients in H, and
Zi = [1 z−1

i z−2
i . . . z−(Qi−1)

i ] for i = 1, 2. Now that we
have the filter coefficients in matrix form, we can consider
separable matrix approximations to H. First, consider the
singular value decomposition (SVD) for H: H = U�VT .
Then, we can simplify H by zeroing out the smallest singular
values of �. If we let �m denote the resulting � after
zeroing-out small singular values, we reconstruct an effective

approximation to H using Hr = U�rVT where we have kept
the r larges singular values of H. In this case, we use the LU
decomposition of Hr to get [19]:

Hr (z1, z2) =
r∑

k=1

⎛

⎝
Q1−1∑

i=0

lm
ki zi

1

⎞

⎠

⎛

⎝
Q2−1∑

j=0

u jkz j
2

⎞

⎠ (3)

where r also denotes the rank of Hr. In (3), we have expressed
the original 2D convolution into a sum of r separable 1D con-
volutions along the rows and columns. Furthermore, it is clear
that the separable decomposition also applies to non-separable
2D kernels. Furthermore, in the simplest case we have r = 1
which eliminates the hardware required for accumulating the
additions. We will not consider this case any further (see [20]
for details).

C. The Discrete Periodic Radon Transform (DPRT)

We define the DPRT of f of size N × N , N prime,
using [21]:

F(m, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N−1∑
i=0

f (i, 〈d + mi〉N ), 0 ≤ m < N,

N−1∑
j=0

f (d, j), m = N,

(4)

where d = 0, 1, . . . , N − 1, m = 0, 1, . . . , N , and < . >N

denotes the positive remainder when we perform integer
division by N (e.g., < 128 >127= 1). In (4), we have that
m indexes the prime directions. Along each prime direction,
we add up the pixels along each ray. In (4), d is used to index
each the rays of each direction.

The inverse DPRT can be used to reconstruct f from the
forward DPRT using:

f (i, j) = 1

N

[
N−1∑

m=0

F
(
m, 〈 j − mi〉N

) − S + F (N, i)

]
(5)

where:

S =
N−1∑

j=0

N−1∑

i=0

f (i, j). (6)

As noted in the definition, the size of the transform needs
to be restricted to prime numbers. We do not impose this
restriction directly to the input image block and kernel sizes,
but to the result of the linear convolution of size N1 × N2,
with N1 = P1 + Q1 − 1 and N2 = P2 + Q2 − 1. Therefore,
a minimal (or even none) zero padding is required if the
input sizes are selected conveniently. There are several reasons
for imposing this restriction. Most importantly though, for
prime N , the DPRT provides the most efficient implemen-
tations by requiring the minimal number of N + 1 primal
directions [22]. It is important to note that prime-numbered
transforms have advantages in convolution applications. Here,
just like for the Fast Fourier Transform (FFT), we can use
zero-padding to extend the DPRT for computing convolutions
in the transform domain. Unfortunately, when using the FFT
with N = 2p , zero-padding requires that we use FFTs with
double the size of N . In this case, it is easy to see that the use
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TABLE I

SUMMARY OF THE PROPOSED METHODS. SCALABILITY IS ACHIEVED BY VARYING THE NUMBER OF 1D CONVOLVERS (J ) AND THE NUMBER OF ROWS
PROCESSED IN PARALLEL IN THE DPRT AND INVERSE DPRT (H ). THERE ARE SOME MINOR DIFFERENCES BETWEEN THE ARCHITECTURES

THAT COMPUTE CROSS-CORRELATIONS AS OPPOSED TO CONVOLUTIONS. FURTHERMORE, CONVOLUTION SYSTEMS CAN IMPLEMENT

CROSS-CORRELATIONS BY FLIPPING THE KERNEL OFFLINE OR IN REAL-TIME IN HARDWARE

of prime-numbered DPRTs is better since there are typically
many prime numbers between 2p and 2p+1.

We refer to [12] for fast and scalable implementations of the
DPRT and its inverse. In the fastest case, we can compute the
full DPRT in just 2N +⌈

log2 N
⌉+1 clock cycles with O(N2)

growth in resource usage. For the scalable DPRT implemen-
tation, we require �N/H� (N + 3H + 3) + N + ⌈

log2 H
⌉+ 1

cycles where H is used as the scalability parameter. We have a
family of scalable DPRT implementation using H = 2, . . . , N
with a resource usage that grows from O(N) for the slowest
case (H = 2) to O(N2) for the fastest case (H = N).

D. Circular Convolutions Using the DPRT

Consider the 2D circular convolution f = g ⊗ h given by:

f (k, l) =
N−1∑

i=0

N−1∑

j=0

g(i, j)h(〈k − i〉N , 〈l − j〉N ). (7)

To define the DPRT convolution property, let m denote a prime
direction and define the DPRTs along the m-direction using:
Fm(d) = F(m, d), Gm(d) = G(m, d), Hm(d) = H (m, d).
We then have that the m-direction DPRTs are related through
1D dimensional circular convolution in the transform domain
as given by [23]:

Fm(d) =
N−1∑

k=0

Gm(k)Hm(〈d − k〉N ) (8)

Thus, we can compute the result of 2D circular convolution
in the transform domain using 1D circular convolutions along
all of the prime directions as given by (8). After computing
the DPRT of the result along each direction, we can then take
an inverse DPRT to recover f .

III. METHODOLOGY

We provide a summary of the proposed methods in Table I.
For general kernels, all methods are based on the DPRT and
inverse DPRT. Here, the fastest methods (FastConv, FastX-
Corr) correspond to a simplification of the scalable methods
(FastScaleConv, FastScaleXCorr). For low-rank kernels, we
recommend the use of FastRankConv and FastRankXCorr. For
the rest of the section, we begin with a description of the
1D convolver architecture that is shared by all methods (see

section III-A). We then show how the 1D convolvers are inte-
grated in the DPRT-based methods of sections III-B and III-C,
and the low-rank decomposition methods of section III-D.
In section III-E we describe the application of overlap-and-
add for applying all of the methods to large images.

A. Computing 1D Circular Convolutions Using
Circular Shifts

Let Fm(d), Gm(d), Hm(d) denote the DPRTs of f, g, h
along the m-th prime direction. We define a special flip
operation H̆m defined by:

H̆m(d) = Hm(N − 1 − d), d ≥ 0,

and the circular right shift (CRS) by n using H n
m that is

defined by:

H n
m(d) = Hm(〈d + n〉N ).

Then, start from (8) to derive a shifted representation of the
circular convolution using:

Fm(d) =
N−1∑

k=0

Gm(k) Hm(〈d − k〉N )

=
N−1∑

k=0

Gm(k) Hm(〈N − 1 − k + d + 1〉N )

=
N−1∑

k=0

Gm(k) H d+1
m (N − 1 − k)

=
N−1∑

k=0

Gm(k) H̆ d+1
m (k). (9)

From (9), we can see that Fm(d) can be expressed as the dot
product between Gm and a flipped and circular right shifted
by d + 1 positions version of Hm (denoted as H̆ d+1

m ).

B. Fast 1D Circular Convolution Hardware Implementation

In this section, we derive a fast hardware implementation
based on (9). We present the hardware architecture in Fig. 1,
the associated algorithm in Fig. 2, and the timing diagram
in Fig. 3.

We begin with the fast computation of 1D circular convolu-
tions given in Fig. 2. Initially, we use parallel loads to transfer
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Fig. 1. Architecture for computing the 1D circular convolution Fm =
Gm ⊗ Hm . B ′ and C ′ represent the number of input bits of G and H
respectively.

Fig. 2. Algorithm for computing the 1D circular convolution Fm = Gm⊗Hm .

both of the DPRTs to the G and H registers in a single clock
cycle. Note that flipping Hm into H̆m is performed by simply
wiring the inputs in reverse as shown in the upper register
portion of Fig. 1. Starting with the last convolution output,
we have a 3-step sequence of parallel multiplies, addition
of the results, and a circular right shift to prepare for the
next output (lines 3-5). The multiplications are performed
in parallel in a single cycle using the parallel fixed-point
multipliers of Fig. 1 and added using a pipelined tree structure
in just �log2(N)� clock cycles (e.g., see [12]). The resulting
outputs are left-shifted in, one output sample at a time, into the
output F register shown in the lower-right portion of Fig. 1.
A single cycle is also needed to perform the circular right shift
of H using the top-left register of Fig. 1.

To derive the timing requirements, refer back to Fig. 3.
Using a fully pipelined approach, we begin working on the
next output sample after the parallel multiplies. It is easy to see
that after the initial latency for the first sample, we compute an
output sample at every cycle. After adding the latency for the
initial loads, the adder latency, and the final left shift, we have
a total of just N + �log2(N)� + 2 clock cycles.

C. Fast and Scalable 2D Linear Convolutions and
Cross-Correlations Using the DPRT

In this section, we develop the architectures, algorithms, bit
requirements, and computational efficiency for 2D convolu-
tions and cross-correlations. Most importantly, we discuss the
scalability of the proposed approach that allows for the most
efficient implementations based on available resources.

We begin with an analysis of the sequence of opera-
tions for computing fast and scalable 2D convolutions and
cross-correlations as shown in Fig. 4. In the most efficient

Fig. 3. Running time for the implementation of the fast architecture for
computing one 1D circular convolution. In this diagram, time increases to
the right. The number of clock cycles for computing each term of Fm (d) is
shown on each strip. The strip on the right represents the total running time.
n = ⌈

log2 N
⌉

represents the addition latency.

Fig. 4. Fast and scalable algorithm for computing 2D linear convolutions and
cross-correlations between g(i, j) and h(i, j) using the architecture depicted
in Fig. 5. L = �(N + 1)/J�.

implementation, the convolution kernel is available ahead of
time. In this case, we can pre-compute the DPRT of the kernel
and store it in memory as shown in the hardware architecture
of Fig. 5. In Fig. 5, we provide a unifying architecture for
implementing FastScaleConv, FastScaleXCorr, FastConv, and
FastXCorr.

For adaptive filterbank applications, the DPRT of the zero-
padded convolution kernel can be computed in real-time using
the SFDPRT_System where the resulting DPRT is stored
in (additional) memory. Alternatively, we can replicate the
SFDPRT_System system for the kernel to avoid an increase
of the running time. For computing cross-correlations, we need
to undo the vertical and horizontal flips associated with convo-
lution. This can be done by flipping the kernel along rows and
columns as described in Fig. 4. Here, note that the horizontal
and vertical flips are performed by the SFDPRT_System
component during the loading of the kernel. An inverted MODE
signal is used to control the SFDPRT_System to perform the
needed flips. Vertical flips are implemented by switching the
order of loading the rows. Thus, in a vertical flip, the last
kernel row is loaded first and the first kernel row is loaded
last. Horizontal flips are simply implemented by loading each
row in reverse. Thus, in a horizontal flip, the last row element
is loaded first and the first row element is loaded last. Overall,
there is minimal overhead for implementing the horizontal and
vertical flips.

Scalability is achieved by controlling (i) the number of
1D circular convolutions that can be computed in parallel
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Fig. 5. FastScaleConv and FastScaleXCorr: Fast and scalable architecture system for computing 2D convolutions and cross-correlations based on the
DPRT (also see Fig. 4). The forward DPRT is computed by SFDPRT. The inverse DPRT is computed by ISFDPRT. The linear convolver computes circular
convolutions for J rows. The finite state machine (FSM) manages all the control signals (except for ’start’ and ’iwr’). We use bold face letters to denote buses
while convolution parameters are depicted in gray. Refer to section II-A for definitions of the basic convolution parameters. FastConv is a simplification of
FastScaleConv for maximum performance (see text).

Fig. 6. Running time for computing J circular convolutions in parallel using
J fast convolution blocks (see basic block structure in Fig. 1). In this diagram,
time increases to the right. Here, it takes one cycle to perform a parallel load
for each block. Overall, we require J + N + n + 1 to compute everything,
where n = ⌈

log2 N
⌉

represents the addition latency.

(denoted by J ), and (ii) the number of image rows that
can be processed in parallel in the DPRT blocks (denoted
by H as described in [12]). Following the computation of
the 1D circular convolutions, an inverse DPRT is applied for
computing the final result.

We also list bit requirements. For the setup, refer to the
notation of section II-A. To compute exact convolutions, we
need to zero pad to a prime number. We thus require N =
NextPrime(max(P1 + Q1 − 1, P2 + Q2 − 1)). Then, it is
easy to see that we require (i) B + n bits for the DPRT of g,
C + n bits for the DPRT of h where g uses B bits, h uses
C bits, and n = ⌈

log2 N
⌉

(also see [12]), (ii) B + C + 3n bits
for the convolutions, and (iii) B + C + 4n bits just before the
normalization step of the inverse DPRT [12], and B+C+x bits
for the final result, where x represents the additional bits used
for precision after the division.

We next derive the computational complexity of our
approach. From section II-C and [12], scalable DPRT

Fig. 7. Running time for computing N + 1 1D circular convolutions using
J fast convolution blocks operating in parallel. In this diagram, time increases
to the right. We need to reload the convolution blocks L times given by L =
�(N + 1)/J�. Each row shows the running time for performing J convolutions
as described in Fig. 6.

computation requires �N/H� (N +3H +3)+N +⌈
log2 H

⌉+1
clock cycles that reduce to 2N + ⌈

log2 N
⌉ + 1 clock cycles

for the fast DPRT implementation. For computing the number
of cycles required for the circular convolutions, refer to
Figs. 6 and 7. As shown in Fig. 6, we require J + N + n + 1
clock cycles to compute J convolutions in parallel where n =⌈

log2 N
⌉

represents the initial addition latency. To compute
outputs for all of the N + 1 required DPRT directions, we use
all J parallel blocks of 1D convolutions for L = �(N +1)/J�
times. Depending on N , increasing J may not always provide
for better solutions. There is a need to find optimal values
for J . We refer to section III-F for determining the optimal
values of J . Overall, we require a total of L · (J + N)+ n + 1
clock cycles to compute all of the 1D convolutions. We provide
a summary of the required resources for implementing the
J 1D parallel convolution blocks in Table VIII.

Overall, based on the derived complexity, we have the
fastest running time using J = N +1 parallel 1D convolutions
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Fig. 8. Custom SRAM architecture for fast transpositions and memory access.
The architecture allows for full-row (or full-column, i.e. transpose) read/write
in a single clock cycle (MODE=1) and individual access to up to J SRAMs
in a single clock cycle (MODE=0). The SRAM stores M rows (or columns)
of N B ′-bit per pixels. The basic architecture can be configured for different
purposes as given in Table II.

Fig. 9. Architecture for computing fast 1D linear convolution Fi = Di ∗ Hi .
This block is the core for computing 2D convolutions with separable kernels.
It computes 1D convolutions for two sizes: (i) D and H are of size p2 and q2
respectively, generating outputs of size p2 + q2 − 1, performed p1 times (the
rows of the 2D image or image block). (ii) D and H are of size p1 and q1
generating outputs of size p1 + q1 − 1, performed p2 + q2 − 1 times (the
columns of the step (i) result). Refer to Fig. 11 (bottom part) for more details
about the 2D convolution.

at just 2N +n +2 clock cycles with resource usage of O(N2)
for flip-flops and full adders. For the minimum number of
resources, we only use a J = 1 1D convolution block that
require (N +1)2 +n +1 clock cycles with the lowest resource
usage O(N) for flip-flops and full adders.

Following the 1D convolutions, we take the inverse DPRT
using the iSFDPRT_System module. Similar to the forward
DPRT, scalability is controlled by H , the number of image
rows processed in parallel [12]. For this step, the input data
uses B + C + 3n bits per pixel. Depending on available
resources, the inverse DPRT can be computed in just 2N +
5n + B + C + 2 for the fast inverse DPRT with O(N2)
resource usage (1-bit additions and flip-flops), or as slow as
�N/2� (N + 2) + 4n + B + C + 4 for H = 2 for just O(N)
resource usage [12].

Fig. 10. Algorithm for computing 1D linear convolution between D and the
1D kernel H (size=S H ) and stores the results in F (size=SG). CLS refers
to the circular left shift operation. G X represents the upper-left row of shift
registers in Fig. 9. H X represents the lower-left row of registers in Fig. 9 that
is pre-loaded with the 1D kernel (H ). The output is stored in MEM = MEM_TMP
for rows, or accumulated in MEM = MEM_OUT for columns.

TABLE II

SRAM MEMORY CONFIGURATIONS FOR MAXIMUM ACCURACY.
ORIENTATION REFERS TO EACH SRAM HOLDING EITHER A

FULL ROW OR COLUMN OF THE IMAGE. THE ACCUMULATE

MODE NEEDS EXTERNAL ADDERS TO PERFORM THE
ACCUMULATION AND DUAL-PORT SRAMs FOR FULL

SPEED. B DENOTES THE NUMBER OF BITS OF THE INPUT

IMAGE. C DENOTES THE NUMBER OF BITS USED

FOR THE KERNEL COEFFICIENTS. WE HAVE
q1 = ⌈

log2 Q1
⌉

AND q2 = ⌈
log2 Q2

⌉

D. Fast and Scalable 2D Linear Convolution Using SVD-LU
Decompositions (FastRankConv)

As described in section II-B, we can use a collection of
1D convolutions along the rows and columns to implement
effective approximations to 2D convolutions with the inherent
loss in accuracy due to zeroing the smaller singular values
associated with the SVD decomposition. Unfortunately, direct
approaches suffer from the need to implement two transposi-
tions that require O(N2) clock cycles. In this subsection, we
present a fast and scalable system that eliminates the need for
transpositions and allows us to compute convolutions in O(N)
to O(N2) clock cycles with the addition of an intermediate
custom memory.

As before, scalability is achieved by controlling J , the
number of linear convolutions that are computed in parallel.
The linear convolution blocks are similar to the circular
convolution blocks except that the complexity is a function of
the size of the convolution kernel only (see Fig. 9 and bottom
part of Fig. 11). Then, in order to operate as fast as possible,
we design a custom memory system that moves entire rows
or columns to and from each linear convolver. The basic idea
is to start by moving all of the rows into the J convolution
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Fig. 11. FastRankConv: Fast and scalable 2D convolution system based on separable decompositions. Refer to subsection II-A for the notation and Fig. 8
for the memory architecture. The linear convolution blocks are very similar to the circular convolution blocks except that multiplications and additions are
reduced to the size of the convolution kernel. The Bus width shown is the one for maximum accuracy. Also, note that the implementation of FastRankCross
is not considered here since cross-correlation is the same as convolution with a flipped kernel, and flipping can be computed during pre-processing (prior to
SVD and LU). The finite state machine is denoted by FSM. The Linear Convolver can be applied to several rows in parallel. The results are accumulated in
MEM_OUT. Please refer to Fig. 12 for a full description of the algorithm and section II-A for definitions of the basic parameters (p1, q1, p2, q2, B, C).

blocks, store the convolution results in J SRAM memories
so that the rows of the row-convolutions results correspond
to the columns of the original image, and then perform row
convolutions and store in J output SRAM memories. Thus,
the need for the transpositions is completely avoided.

Then, for a single clock cycle, we use custom memories to
(i) allow us to move entire rows and columns of blocks of
pixels from memory to the convolution blocks and vice-versa,
and (ii) allow direct access to J different SRAMs. We present
the proposed custom SRAM architecture in Fig. 8, the full
system architecture in Fig. 11 and the associated algorithms
in Figs. 10 and 12. Refer to section II-A for the notation.
We customize the basic SRAM architecture of Fig. 8 as given
in Table II, so that in a single clock cycle: (a) MEM_IN
provides a full row of the image, (b) MEM_KER provides the
entire row or column filter coefficients, (c) MEM_TMP stores
the results of convolution along each row, provides access to a

full column of the results, and (d) MEM_OUT, accumulates the
final result, adds up to P2 + Q2 − 1 values of the convolved
image (in a single clock cycle), and also provides a full row.
The required resources are summarized in Table IX.

We also provide a summary of performance-resource
requirements. Without loss of generality, we assume that P2 ≥
P1, Q2 ≥ Q1, and consequently N2 ≥ N1. Furthermore, for
the purposes of the analysis, assume full rank: r = Q1, and
let L R = �P1/J� and LC = �(P2 + Q2 − 1)/J�. The total
running time is given as the sum of clock cycles required for:
(i) row processing: r · L R · (J + P2 + Q2 − 1), (ii) column
processing: r ·LC ·(J +P1+Q1−1), and (iii) the latency of the
adder tree

⌈
log2 Q1

⌉ + 1. To simplify the derivation, let N =
max {P2 + Q2 − 1, P1 + Q1 − 1}. Then, for J = 1, we have
minimum resource usage that grows as O(N) with a running
time of O(N2). For J = N , we have the fastest running time
O(N) with resource usage that grows as O(N2). Refer to
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Fig. 12. Algorithm for computing the 2D linear convolution between
an image (or image block) g(i, j) and the non-separable kernel h(i, j)
decomposed into r separable kernels. We use h R(i, j) for the row kernels and
hC (i, j) for the column kernels. The results are computed in g′(i, j). The row-
convolution results are stored in MEM_TMP. The final output is accumulated
in MEM_OUT.

Table II for detailed resource usage of the memories. We can
further optimize the architecture parameters as described in
section III-F. We will also provide more detailed comparisons
in section IV.

E. Scalability for Large Images Using Overlap-Add

The convolution and cross-correlation kernels tend to be
much smaller than the size of the input image. Thus, for much
larger images, the best approach is to design the hardware
architecture for the smaller kernels. We summarize the basic
approach below.

The original image is subdivided into the smaller windows
that are equal to the size of the kernel. Convolutions and cross-
correlations can be computed for each block. Results from
neighboring blocks must be added together. Furthermore, the
final output is a concatenation of the results from each block.

The basic approach is very well understood. Furthermore,
the approach can also be parallelized to use multiple hardware
blocks. In what follows, we will simply assume that both the
image (block) and the convolution/cross-correlation kernel size
are of the same size. Furthermore, we will focus on the most
common size when both the image (block) and the kernels are
square.

F. Pareto Optimal Architectures
As we discussed earlier in this section, it is possible to use

J that is sub-optimal. Here, we refer to an architecture as being
sub-optimal in the Pareto sense (e.g., see [24]). Essentially, an
architecture is considered to be Pareto-optimal if it provides
the best possible performance for required resources. Thus,

a Pareto optimal family of architectures will always produce
better running time for more resources. To derive the set of
Pareto-optimal solutions, recall that our scalable families of
architectures may contain less than J rows for the last block
of 1D convolutions. Thus, for FastScaleConv and FastScaleX-
cross, to fully utilize available hardware resources, we require
that the selected J values would satisfy 〈N + 1〉J = 0. Simi-
larly, for FastRankConv, we require that the selected J values
simultaneously satisfy 〈P1〉J = 0 and 〈P2 + Q2 − 1〉J = 0.

IV. RESULTS

In this section, we provide extensive comparisons with prior
methods to demonstrate the promise of the proposed methods.
Here, we note that the proposed systems implement both
convolutions and cross-correlations.

We compare our approach to relevant, state of the art, con-
volution systems by considering (i) serial systolic arrays [14]
(SerSys), (ii) scalable and parallel systolic arrays [15]
(ScaSys), (iii) sliding windows [25] (SliWin), and (iv) parallel
and pipelined Fast Fourier Transform radix-2 [10] (FFTr2).
Here, we do not consider methods based on Distributed
arithmetic (DA) solutions since the internal ROM required for
the DA operation grows exponentially with the kernel size,
making them unsuitable for large kernels [26]. Furthermore,
to provide fair comparisons, we are assuming that FFTr2 is
based on the parallel use of the highly efficient 1D FFTs
described in [10].

We will consider comparisons for different bitwidths. Here,
we note that the required number of bits for maintaining full
precision was developed in section III. Furthermore, we will
provide results from full precision, the use of DSPs, and a
limited bitwidth in the results. We are currently researching
different methods for selecting different bitwidths for different
stages of the algorithms.

As described earlier, the proposed architectures can compute
both convolutions and cross-correlations. For FastRankConv,
flipping the kernel can clearly be done during pre-processing,
prior to SVD and LU computations. In what follows,
we will present results for FastConv, FastScaleConv, and
FastRankConv. Here, we note that FastXCorr, FastScaleX-
Corr, and FastRankXCorr are minor variations of FastConv,
FastScaleConv, and FastRankConv.

We describe the implementation setup in section IV-A.
In section IV-A, we also describe alternative methods. We pro-
vide extensive comparisons in terms of performance and
required hardware resources in section IV-B. FPGA and SOC
implementations are described in section IV-C.

A. Implementation Setup

We consider convolutions with P × P kernels and image
blocks where the output is of size N × N where N = 2P − 1.
For section IV-B, we assume B = 8 bits for the input image
pixels and C = 12 bits for the kernel coefficients. We use
12-bits for the outputs of the additions, multiplications, and the
DPRT of section IV-B. We consider C = 8 bits for the kernel
coefficients and full-precision for the outputs in the FPGA
and SOC implementations of section IV-C. For the FFTr2, the
computations are performed using 32-bit floating point units.



CARRANZA et al.: FAST 2D CONVOLUTIONS AND CROSS-CORRELATIONS USING SCALABLE ARCHITECTURES 2239

TABLE III

COMPARISON OF THE PERFORMANCE OF 2D CONVOLUTION AND CROSS-CORRELATIONS ARCHITECTURES AS A FUNCTION OF COMPUTATIONAL
RESOURCES. THE RESULT IS OF SIZE OF N × N , WHERE N = 2P − 1, P REPRESENTS THE INPUT IMAGE SIZE AND CONVOLUTION KERNEL

SIZE, n = ⌈
log2 N

⌉
, p = ⌈

log2 P
⌉

, J DENOTES THE NUMBER OF PARALLEL 1D CIRCULAR CONVOLUTIONS, AND H DENOTES THE

NUMBER OF IMAGE ROWS THAT ARE PROCESSED IN PARALLEL BY THE DPRT. FOR SCASYS, P NEEDS TO BE A COMPOSITE

NUMBER AND IT IS ASSUMED TO BE GIVEN BY P = PA · PB . FOR FFTr2, D = 2, 4 REPRESENTS THE NUMBER OF
1D FFT UNITS RUNNING IN PARALLEL. WE DEFINE: (I) Affb (a, b) TO BE NUMBER OF REQUIRED FLIP-FLOPS

INSIDE THE a-OPERAND OF b BITS ADDER TREE INCLUDING INPUT BUFFERS, (II) Aff () TO BE THE SAME

NUMBER WITHOUT ACCOUNTING FOR INPUT BUFFERS, AND (III) AFA () TO BE THE EQUIVALENT NUMBER
OF 1-bit ADDITIONS. TO INTERPRET THE TABLE, NOTE THAT Affb(.), Aff(.), AND AFA(.) GROW LINEARLY

AS A FUNCTIONS OF N , AND CAN BE COMPUTED EXACTLY USING THE THE ALGORITHM GIVEN IN THE

APPENDIX (FIG. 16). INSTEAD OF 12-bits, FOR THE NUMBER OF RESOURCES FOR A DIFFERENT

NUMBER OF OUTPUT BITS, SIMPLY REPLACE 12 BY THE DESIRED NUMBER OF BITS

For alternative image representations, we briefly refer to
Table III and Fig. 16 that are covered in more detail in
section IV-B. In Fig. 16 we provide an algorithm for com-
puting the (i) number of flip-flops inside the adder tree and
(ii) the equivalent number of 1-bit additions as functions of
the number of bits per pixel D and the size of the final output
image N . From Fig. 16, we can see that increasing the number
of input bits from 8 to 24 will linearly increase the numbers
of adder tree flip-flops and 1-bit additions but remain bounded
above by 3× the amounts presented here. In terms of the fixed-
point multipliers, at 24-bits, we would also consider the use
of highly-optimized, 32-bit floating point units. Furthermore,
we note that there will be a minimal impact on running time.
Overall, we note that our fixed-point implementations are most
effective for the most commonly used, 8-bit inputs.

To enable comparisons between FFTr2 and fixed-point
implementations, we make some simple, and realistic

approximations for possible FPGA and SOC implementa-
tions. Based on Tables 2 and 3 from [27], in terms of
1-bit adders, we have that 32-bit floating point additions
can be approximated as 10× the cost of 32 1-bit fixed-
point additions. Furthermore, to compare FFTr2 to all other
implementations, we need to compare resources for 32-bit
floating-point multiplication in terms of resources for 12-bit
fixed-point multiplication. To provide realistic comparisons,
we implemented complex, 32-bit floating point multiplica-
tions on the Virtex-7 (XC7VX1140). Without using DSPs,
the multipliers require 650 LUTs and 32 flip-flops. When
using DSPs, the multipliers require 34 LUTs, 32 flip-flops,
and 2 DSPs. On the same FPGA, without using the DSPs,
a 12-bit fixed point multiplier required just 148 LUTs. In terms
of LUTs, we have: 650/148 ≈ 4.4. We thus approximate the
cost of 32-bit floating point multiplications as equivalent to
4.4 times the cost of 12-bit fixed point multiplications.
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Fig. 13. Normalized running time in clock cycles versus output image (block) size (N ). Here, the running time is the actual number of clock cycles divided
by N . The plot refers to convolutions between P × P blocks (N = 2P − 1). For each implementation, as a function of N , we are assuming the use of the
minimum amount of required resources. FastConv is the fastest followed closely by FastRankConv for rank=2 and J = N (approximation). For J = N + 1
and H = N , FastScaleConv runs as fast as FastConv and thus, it is not repeated here. Methods with O(N) execution times remain below 10 (implying
10N execution time). Methods with O(N2) execution times rise well above 10. Since P = PA · PB , ScaSys implementations that achieve O(N) execution
time require O(N3) resources as opposed to O(N2) resources for the proposed methods (see Table III). Larger image sizes can also be handled using
overlap-and-add.

For FFTr2, [10] does not provide detailed running time for
the complete convolution of 2D images. To provide for fair
comparisons, we consider an extension of FFTr2 using point-
to-point multiplications using D 1D FFT cores. Then, in the
fastest possible 2D implementation, we assume that it would
take N2/D additional clock cycles to implement the point to
point complex multiplications.

As discussed earlier, for FastScaleConv, we achieve hard-
ware scalability by varying H , the number of rows processed
in parallel for the scalable DPRT, and J , which represents
the number of 1D convolutions computed in parallel. Here,
for H = 2, 3, . . . , N − 1, we will simply set J = H
for a balanced approach towards both. Then, for H = N ,
we use J = N + 1 to provide the optimal solution using
FastConv. For FastRankConv, we use r to denote the rank of
the approximation.

There are some special restrictions on N . For the DPRT-
based methods, N needs to be prime. For FFTr2, N is assumed
to be a power of 2. For ScaSys, P needs to be a composite
number (N = 2P −1), and we thus assume that P = PA · PB .
We focus on the cases when PA = 2 (slowest) and PB = 4
(fastest), with an input buffer and fully pipelined additions. We
do not include the case when PB = 2 because the resource
usage becomes prohibitive (O(N3)). For SerSys, SliWin and
FastRankConv, there is no restriction for P . When needed to
change the size, we apply zero-padding.

B. MultiObjective Comparisons

A primary contribution of the manuscript is to provide con-
volution and cross-correlation architectures that are both fast
and scalable. Because of scalability, for most reasonably-sized

devices and convolution sizes, we can find possible imple-
mentations that can fit within it. On the other hand, there
is great variability among different devices. Here, for an
expanding range of P values, we show that our proposed
architectures are optimal in the multi-objective sense. In other
words, for any given level of fast performance (from O(P)
up to O(P2) clock cycles), the required architectures require
fewer hardware resources.

In terms of transform size scalability, we note that there
are several prime numbers between any two of powers of
two. For example, from 4 to 256, we only have 7 possible
sizes for FFTr2, compared to 53 prime numbers for FastConv
and FastScaleConv, and no size restrictions for FastRankConv.
As a result, for P = 65, N = 129 requires zero-padding to
256 for FFTr2 while it can be handled by a 131-sized DPRT
associated with FastConv and FastScaleConv.

We present a comprehensive summary in terms of perfor-
mance and resources in Table III. Table III lists performance
in clock cycles, number of flip-flops, number of 1-bit additions
(equivalent full-adders), number and type of multipliers, and
SRAM requirements. The expressions in Table III are based on
the derived running times and resources of section III using the
bit-widths described in Sec. IV-A. The resources of Table III
do not include control logic (e.g., for the Finite State Machine),
or any logic needed for I/O interfacing. We will provide more
details for FPGA and SOC implementations in section IV-C.

From Table III, we note the excellent performance of
FastConv. When the amounts of required resources do not
permit the full implementation of FastConv, FastScaleConv
can be used to provide a trade-off between performance and
required resources. Here, note that the complex expressions
for FastScaleConv reduce to the ones for FastConv when
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Fig. 14. Family of fast and scalable architectures for N = 127 (N = 128 for
FFTr2). The plots refer to convolutions with 64 × 64 blocks (P = 64). For
comparison purposes, we approximate the hardware cost for implementing
32-bit floating point additions and multiplications using fixed-point additions
and 12-bit fixed-point multiplication as described in section IV-A. (a) Running
time versus the required number of 1-bit flip-flops. (b) Running time versus
the required number of 1-bit additions. (c) Running time versus the required
number of equivalent multipliers.

FastScaleConv uses the maximum number of 1D convolvers
(J = N + 1) and processes the maximum number of rows in
the DPRT and iDPRT (H = N). Then, as we reduce H and
J towards 1, the running performance grows from O(P) to
O(P2) clock cycles, and the numbers of resources are reduced
from O(P2) to O(P). Furthermore, to interpret the rest of the
table, from N = 2P−1 we have that P = (N+1)/2 = PA ·PB ,
and note that Affb(.), Aff(.), AFA(.) grow linearly as functions
of N . In what follows, we will further analyze performance
in terms of running time (Fig. 13) and also provide multi-
objective comparisons in terms of running time and required
resources (Fig. 14).

Before we proceed with our analysis, we note that the results
in Figs. 13 and 14 have been derived from Table III. On the
other hand, we note that these results agree closely with our
FPGA and SOC implementations that will be described in
section IV-C. Furthermore, we are assuming that the data can
be streamed to the FPGA or SOC at a rate that matches the
computing rate. Here, we note that our assumption is not very

restrictive since the bandwidth for a PCI express 3.x is about
16 GB/s and our FPGA or SOC implementations are running
around 100MHz. However, for larger kernels, we may need
custom hardware to stream data to the FPGA or SOC at high
data rates.

We begin with a comparison of normalized execution times
in Fig. 13. For Fig. 13, we divide the required number of
clock cycles by N . To illustrate the range of possibilities,
we consider the two extreme performance cases; architectures
with quadratic and linear time complexity.

For quadratic time complexity (O(N2) clock cycles), we
have scalable implementations derived by FastScaleConv for
J = H = 2, and FastRankConv with J = 1, r = 2.
Alternatively, we consider a scalable extension of FFTr2 for
D = 2, 4, a scalable implementation of ScaSys, and the non-
scalable implementations due to SliWin and SerSys.

FastConv provides the fastest performance at just 6N +
5n + 17 clock cycles (n = log2(N)). For J = N + 1,
FastScaleConv achieves the same performance as FastConv.
For rank=2 approximations to the convolution kernel (J = N),
FastRankConv approximates the performance of FastConv.
In terms of related research, for PB = 4, ScaSys achieves
linear time-performance as well. On the other hand, from
Table III, for linear time performance, using PA = P/PB =
P/4, we can see that ScaSys’s requirements grow as P3 as
opposed to P2 growth for FastConv and FastScaleConv.

Due to the significant overhead associated with implement-
ing floating point arithmetic for very large kernels, we do not
consider the extreme case where N 1D FFTs can also yield
linear performance (using a fast transposition, like the one we
developed). However, we do note that for very large kernels,
as given in Table III, the FFT based methods will most likely
give the best results since the N log2(N) growth in floating-
point multipliers and additions will likely cost less than the
N2 growth of fixed-point multipliers and adders required
by FastConv, FastScaleConv, and FastRankConv. We have
certainly not found a study in the literature that demonstrated
that such an approach was feasible. As we shall show next
in our multi-objective comparisons, FastConv, FastScaleConv,
and FastRankConv perform better than FFTr2 in realistic
convolution kernels (e.g., for N = 127 and thus for lower
N also). Furthermore, as we show later in this section, we
can fit fast implementations of FastConv, FastScaleConv, and
FastRankConv in current FPGAs and SOCs.

We provide detailed multi-objective comparisons in Fig. 14
for N = 127 (N = 128 for FFTr2). In Fig. 14 we show
comparisons based for 1-bit FlipFlops (Fig. 14(a)), equivalent
1-bit Additions (Fig. 14(b)), and equivalent 12-bit fixed point
Multipliers (Fig. 14(c)). Refer back to Table III for memory
usage. To interpret the plots, note that each curve, (termed a
Pareto front), represents a family of optimal implementations.
The best results come from the Pareto fronts that are located
in the lower-left. Within each Pareto front, the upper left
point represents the implementation that requires the largest
number of cycles (slowest) with the lowest number of required
resources. Then, the lower-right point represent the implemen-
tation that requires the smallest number of cycles (fastest) with
the maximum number of required resources. To enable more
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TABLE IV

PERFORMANCE AND RESOURCE COMPARISONS FOR N = 127 (128 FOR FFTr2). HERE, WE HAVE CONVOLUTIONS BETWEEN 64 × 64 BLOCKS. FOR
LINEAR-TIME IMPLEMENTATIONS, FastConv IS THE FASTEST AND SERVES AS THE REFERENCE DESIGN (ASSIGNED 1×). THE REMAINING

IMPLEMENTATIONS ARE NORMALIZED BY THE CORRESPONDING RESOURCES REQUIRED BY FastConv. SIMILARLY, FOR QUADRATIC-TIME

IMPLEMENTATIONS, FastScaleConv IS USED AS THE REFERENCE DESIGN. MEMORY REQUIREMENTS REFER TO SRAM BITS. ALSO,
NOTE THAT THE REPORTED FFTr2 RESOURCES FOR ADDITIONS AND MULTIPLICATIONS REFER TO AN APPROXIMATION OF

THE EQUIVALENT FIXED-POINT RESOURCES (REFER TO SECTION IV-A)

TABLE V

FULL-PRECISION IMPLEMENTATIONS OF FastScaleConv AND FastConv ON
Zynq-SoC AND VIRTEX-7. EACH BRAM REPRESENTS UP TO 36 Kbits

OF SRAM. EACH DSP REPRESENTS A MULTIPLIER. CLKS REFERS

TO THE REQUIRED NUMBER OF CLOCK CYCLES AND BITS REFERS
TO THE NUMBER OF BITS FOR REPRESENTING THE FINAL RESULT FOR

8-bit INPUTS AND 12-bit KERNELS. HERE, BITS = B + C + n WHERE

B = C = 8 bits AND n = ⌈
log2 N

⌉
. WE PRESENT A FastConv IMPLEMEN-

TATION FOR N = 37 ON THE VIRTEX-7. IN TERMS OF RESOURCES,
FOR THE ZYNQ-SOC (XC7Z100), WE HAVE 277400 LUTs,

755 BRAMs (36 Kb) AND 2020 DSPs. FOR THE

VIRTEX-7 (XC7VX1140), WE HAVE 712000 LUTs,
1880 BRAMs (36 Kb), AND 3360 DSPs

direct comparisons, we also list specific numbers for some of
the implementations in table IV.

Since they are the fastest, FastConv implementations are
always in the lowest right portion in each plot. From table IV,
we can see that FastConv only requires 25% of the mul-
tipliers and memory, and 56% of the addition resources
required by ScaSys, while requiring only 77% of the clock-
cycles. In terms of scalable approaches, the Pareto front for
FastRankConv (rank=2), provide the best performance with
minimum resources. The limited resources required by Fas-
tRankConv are also clearly documented in table IV. However,
the use of rank=2 approximations may be inaccurate. On the
other hand, the full-ranked FastRankConv requires the maxi-
mum amounts of resources to deliver the same performance.

TABLE VI

FULL-PRECISION AND SCALABLE FPGA IMPLEMENTATIONS OF
FastRankConv (RANK=2) ON A VIRTEX-7 (XC7VX1140).

THE RESOURCES REMAIN INDEPENDENT OF RANK SINCE

WE ARE USING A FIXED A NUMBER OF BITS FOR ALL
IMPLEMENTATIONS. RANK ONLY AFFECTS EXECUTION

TIMES. REFER TO TABLE V FOR DEFINITIONS OF

BRAM, DSPs, CLKS, AND RESOURCES

FOR THE VIRTEX-7

Consistently, FastScaleConv provides the best scalable
implementations without requiring low-rank. As seen from
table IV, for the linear case, FastScaleConv is slightly more
expensive in resources than FastConv and substantially less
expensive than ScaSys. Overall, ScaSys (PB = 4) implemen-
tations achieve the speed of FastScaleConv but require signifi-
cantly more multipliers and adders. SerSys and SliWin require
significantly more resources and are also much slower than
FastScaleConv. Returning to table IV, for the quadratic case,
FastScaleConv and FastRankConv (rank=2) are the fastest
while requiring fewer adders and (equivalent) multipliers.
In terms of memory requirements, our proposed scalable
approaches do require more memory, still growing in the
order of O(N2) which should not be a limitation with current
technologies. On the other hand, with the exception of SliWin,
only FastConv, FastScaleConv allow the kernel to change in
running time. As a result, FastConv and FastScaleConv can
also be used in cross-correlations with adaptive kernels, and
adaptive filterbank applications.
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TABLE VII

SELECTED FREQUENCIES (IN MEGAHERTZ) AND RUNNING TIME
(IN MICROSECONDS) FOR FPGA IMPLEMENTATIONS USING VIRTEX-7

(XC7VX1140). REFER TO TABLES V AND VI FOR SETUP DETAILS

Fig. 15. Performance comparison between SliWin [25], FastConv and
FastScaleConv. In terms of resources, we only count the number of DSPs
which serves as a limiting factor for fitting the implementation in modern
devices. To measure performance, we consider the number of Frames Per
Second (FPS) to perform the convolution between an image of 480p (640 ×
480) and a kernel of size 19 × 19. SliWin used a Stratix IV E530 with up to
1024 DSPs. FastConv and FastScaleConv used a Virtex-7 XC7VX1140, with
up to 3360 DSPs and overlap-and-add with different block sizes. We note
that it is fair to assume that both DSPs are equivalent, and expect that their
amounts will not change with bit-widths for inputs up to 18 bits. At 200 FPS,
FastScaleConv uses approximately 50% less DSPs than SliWin. On the other
hand, FastConv is 2.4 times faster with just 40% more multipliers.

C. Full-Precision FPGA and SOC Implementations

In order to understand what can be fitted in modern devices,
we consider full-precision implementations for 8-bit inputs
and 12-bit kernels using the on-chip memory. Here, we
assume that the image and convolution blocks are stored in
the BRAMs inside the FPGA or SOC. For overlap-and-add
implementations, we assume that the images will be stored
in external memory and be transferred to the FPGA or SOC
for processing. Here, we are not including any additional
delays due to transferring the image from external memory
to the FPGA or SOC. The proposed systems were imple-
mented using current FPGA and SOC technologies (Virtex-7
and Zynq-SOC). For FastScaleConv and FastConv, for differ-
ent N and J (the number of parallel 1D convolvers), we show
different implementations in table V. For FastRankConv,
by varying P and J , we present different implementations
in table VI.

A collection of FastScaleConv architectures were success-
fully implemented for N = 7 to N = 127. For N = 41,

Fig. 16. Required tree resources as a function of the zero padded image (N ),
and the number of bits per pixel (D). Refer to Table III for definitions of
Affb,AFA. To compute Aff for architectures that do not use input buffers,
simply remove step 12 from the algorithm.

TABLE VIII

RESOURCE USAGE FOR DIFFERENT 1D CIRCULAR CONVOLUTIONS

IMPLEMENTATIONS. HERE, WE HAVE TWO ZERO-PADDED IMAGES

(OR IMAGE BLOCKS) g AND h OF SIZE N × N (INCLUDING
ZERO-PADDED PIXELS), B AND C BITS PER PIXEL RESPECTI-
VELY AND n = ⌈

log2 N
⌉

. FOR THE ADDER TREE, WE DEFINE

Affb TO BE THE NUMBER OF REQUIRED FLIP-FLOPS INCLUDING
INPUT BUFFERS, AND AFA TO BE THE NUMBER OF 1-bit ADDITIONS.
Affb AND AFA GROW LINEARLY WITH RESPECT TO N AND CAN BE

COMPUTED USING THE ALGORITHM GIVEN IN FIG. 16. FOR THE

MULTIPLIERS, WE NOTE THAT EACH ONE IS IMPLEMENTED USING
TWO INPUTS OF SIZE B + n AND C + n BITS AND AN OUTPUT OF

B + C + 2n BITS. HERE, WE USE THE TERM “1-bit ADDITIONS”
TO REFER TO THE NUMBER OF EQUIVALENT 1-bit FULL ADDERS

a high-level of parallelism was achieved by computing the
DPRT and inverse DPRT by parallel-processing H = 32 rows
at a time through J = 32 1D full-precision, pipelined
convolvers also operating in parallel. In our full-precision
example, the output images required 34 bits. For N = 37,
we have a full precision implementation of FastConv that only
requires 291 clock cycles by parallel processing 38 rows of
the DPRT and inverse DPRT, and parallel computing 38 1D
convolutions. From table V, we can see that implementations
are limited by the number of available look-up tables. Thus,
it is clear that larger values of N can be implemented by
reducing the precision requirements.

As shown in table VI, FastRankConv makes a very efficient
use of the DSPs while not requiring significant LUT resources.
For example, for P = 67, FastRankConv only requires
16205 LUTs (out of 712000 LUTs). In comparison, FastScale-
Conv requirements for N = 127 (which approximates 2P −1),
requires about 20 times more LUTs to deliver the full-accuracy
results. Also for P = 67, FastRankConv with rank r = 2
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TABLE IX

RESOURCE USAGE FOR DIFFERENT LINEAR CONVOLVERS IMPLEMEN-
TATIONS. HERE, ALL THE QUANTITIES ARE GIVEN FOR MAXIMUM

ACCURACY. REFER TO THE CAPTION OF TABLE VIII AND

SECTION II-A FOR THE NOTATION

requires 48903 clock cycles, compared to 33507 clock cycles
for FastScaleConv with J = 1 and H = 2 without any rank
restrictions. Thus, as seen earlier, for low-rank kernels, Fas-
tRankConv is a good alternative to FastScaleConv. For higher
ranks and general-purpose implementations, FastScaleConv is
more preferable.

We also compare the results of the actual FPGA and SOC
implementations of Tables V, VI, and VII with the predicted
measurements of Table III. In terms of clock cycles, there
is very little difference. Here, we note that, as described in
section III, the number of clock cycles includes the number of
cycles needed to load each image block row-by-row, process-
ing, and final delay until the output is stored in the output
memory. In terms of resources, we have found exact matches
for multipliers (mapped to DSPs units), flip-flops and SRAM
(mapped into BRAMs). In terms of the adders, we do have
some additional combinational logic that is captured in the
number of the LUTs. The additional logic is due to the use
of muxes in the DPRT as reported in [12]. We note that the
additional overhead due to the finite state machine (FSM) and
ancillary logic did not exceed 1% of the total resources.

We provide running times for different implementations in
Table VII. All of our implementations achieve a maximum
frequency around 100MHz. For larger N , we have a slight
decrease in frequency for the implementation of FastScale-
Conv. The decrease is due to an increase in propagation time
for the larger muxes used in the DPRT blocks (see [12]). For
N = 37 and J = 38, we have the highest frequency for
FastConv. The highest frequency is due to the fact that the
Fast DPRT component of FastConv is a simplified version
of the scalable DPRT component of FastScaleConv [12]. The
clock frequencies for FastRankConv remain fairly constant.

We also provide comparisons against implementations by
alternative methods. To provide better comparisons, we com-
pare the performance as a function of the number of DSPs
that are required. Based on [25], we provide an optimized
implementation for SliWin. The comparison is given in Fig.15
for images of size 640 × 480. From Fig. 15, we see that
FastConv remains the fastest by far (2.3× the SliWin example).
Furthermore, it is clear that FastScaleConv provides a nice
Pareto front with several optimal implementations as a func-
tion of the number of available DSPs. Similar to SliWin,
FastScaleConv with H = 13, J = 14 achieves around
200 FPS. However, for this implementation, FastScaleConv
uses approximately 50% less DSPs.

By using the scalability of the proposed architectures, we
can adjust H and J to ensure that the architecture fits
into a given chip and also ensure that memory bandwidth
requirements do not exceed what is available to us. The basic
idea is to provide the proposed system with new convolution
blocks after the required number of cycles. Fortunately, there
is no bandwidth issue here. The required bandwidth is O(J · f )
where f denotes the operating frequency. For J = 2 we have
the slowest case and the required bandwidth that is O( f ).
Based on our discussion, we use J ≈ P to require the highest
bandwidth of O(P × f ), where P × P is the block size. For
instance, for a video of size 640×480 at 30 FPS, for P = 19,
J = H = 2 (minimum resource usage), f = 110M H z,
each frame is processed in 19ms (within the 33ms to achieve
the 30FPS), and the required bandwidth is just 9.2M B/s,
which can be easily achieved. Thus, as for all 2D convolution
methods, as the size of the block increases, our approach tends
to be compute-bound.

V. CONCLUSIONS

The manuscript introduced fast and scalable architectures
for computing 2D cross-correlations and convolutions. Fast-
Conv architectures deliver the best performance by computing
convolutions in O(P) clock cycles. The FastScaleConv family
of architectures allows us to implement efficient architec-
tures that can be restricted to the architectures of different
devices. The FastRankConv family of architectures allows us
to consider low-rank approximations that can significantly
reduce the number of required resources. Overall, for the
same level of performance, FastRankConv and FastScaleConv
require significantly fewer hardware resources than alternative
approaches.
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