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Abstract The aim of this study was to investigate the use-
fulness of multilevel binary and gray scale morphological
analysis in the assessment of atherosclerotic carotid plaques.
Ultrasound images were recorded from 137 asymptomatic
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and 137 symptomatic plaques (Stroke, Transient Ischaemic
Attack (TIA), Amaurosis Fugax (AF)). We carefully de-
velop the clinical motivation behind our approach. We do
this by relating the proposed L-images, M-images and H -
images in terms of the clinically established hypoechoic,
isoechoic and hyperechoic classification.

Normalized pattern spectra were computed for both a
structural, multilevel binary morphological model, and a
direct gray scale morphology model. From the plots of the
average pattern spectra, it is clear that we have significant
differences between the symptomatic and asymptomatic
spectra. Here, we note that the morphological measurements
appear to be in agreement with the clinical assertion that
symptomatic plaques tend to have large lipid cores while the
asymptomatic plaques tend to have small lipid cores.

The derived pattern spectra were used as classifica-
tion features with two different classifiers, the Probabilis-
tic Neural Network (PNN) and the Support Vector Machine
(SVM). Both classifiers were used for classifying the pattern
spectra into either a symptomatic or an asymptomatic class.
The highest percentage of correct classifications score was
73.7% for multilevel binary morphological image analysis
and 66.8% for gray scale morphological analysis. Both were
achieved using the SVM classifier. Among all features, the
L-image pattern spectra, that also measure the distributions
of the lipid core components (and some non-lipid compo-
nents) gave the best classification results.

1 Introduction

High-resolution ultrasound has made possible the noninva-
sive visualization of the carotid bifurcation and for that rea-
son it has been extensively used in the study of arterial wall
changes; these include measurement of the thickness of the
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intima media complex (IMT), estimation of the severity of
stenosis due to atherosclerotic plaques and plaque character-
ization [1].

During the last decade, the introduction of computer
aided methods and image standardization has improved the
objective assessment of carotid plaque echogenicity, and
heterogeneity [2], and has largely replaced subjective (vi-
sual) assessment [1], that had been criticized for its rela-
tively poor reproducibility [3].

Previous studies investigated the usefulness of texture
analysis [4–8], and more recently, multiscale binary mor-
phological analysis was also used [6–9] towards the de-
velopment of a Computer Aided Diagnostic (CAD) sys-
tem for the classification of asymptomatic and symptomatic
atherosclerotic plaques. These studies gave promising re-
sults.

In this study, we investigate the use of morphological
analysis in the aforementioned classification, and compare
the findings with other studies. Morphological analysis pro-
vides us with geometric methods for investigating multires-
olution decompositions of the plaques. We derive our mul-
tiresolution decompositions based on structural models of
the plaque (see Sect. 3.1). We also investigate a direct, mor-
phological gray scale analysis of the plaques, and show that
the structural model offers the best results. We provide a de-
tailed clinical motivation for our study in Sect. 1.2.

The paper is structured as follows; Sect. 2 describes the
material, image acquisition, normalization and segmentation
of plaque images. Sections 3 and 4 describe the morpho-
logical analysis methods and the classification algorithms,
respectively. Section 5 gives the results and Sect. 6 the con-
cluding remarks.

1.2 Motivation

In this section we provide clinical motivation for our study.
For a summary of the related medical literature on the use
of ultrasound imaging in the assessment of stroke we refer
to [8]. In what follows, we will provide a brief overview to
help motivate our study.

In the medical literature, plaques are characterized in
terms of their average echodensity level and uniformity [10].
Here, echodensity refers to the reflection of the acoustic
waves through the different portions of the plaque. Thus,
hypoechoic regions refer to weakly reflecting regions that
appear echolucent or black. To establish that a region is hy-
poechoic it needs to be compared to the blood regions of the
image. Similarly, isoechoic regions are established through
comparison with sternomastoid. To establish that a region is
hyperechoic, it needs to be compared to bone regions. Hy-
perechoic regions are echogenic and thus appear white in
the ultrasound images. According to the uniformity of the
echodensity of the plaques we have homogeneous and het-
erogeneous plaques [11]. It is important to note that a plaque

can be homogeneous and hypoechoic, isoechoic or hypere-
choic. For example, a heterogeneous hypoechoic plaque is a
dark plaque characterized by non-uniform blobs.

Using natural history studies, it was suggested by Reilly
[12] and confirmed by Johnson et al. in [13] that echolucent
(dark) heterogeneous plaques (confirmed for 75% steno-
sis) will be at an increased risk of future strokes. Simi-
larly, Langsfeld [14] confirmed that patients with hypoe-
choic plaques had a twofold increase in the risk of stroke
(15% versus 7%). More recently, Polak et al showed that
hypoechoic plaques (dark) had a significantly increased rel-
ative risk factor at 2.78 over isoechoic and hyperechoic
plaques [15]. As we shall see in our discussion section
(Sect. 5.3), these clinical studies are in strong agreement
with our own findings that we report (for the first time) in
this paper. Classification using morphological pattern spec-
tra of the hypoechoic (low-intensity) components gave the
highest possible classification yield than any other texture
feature or any other component.

Beyond the use of the average intensity level, AbuRahma
[16] reported a significant increase in the incidence of ipsi-
lateral strokes in patients with heterogeneous plaques with
carotid stenosis (13.6% versus 3.1% for p = 0.0001). In
his study, he defined plaques as heterogeneous if they are
composed of a mixture of hypoechoic, isoechoic and hyper-
echoic components. Else, if a plaque only contained a sin-
gle type of components, it was classified as homogeneous.
Similarly, Sterpetti [17] showed that stenosis (>50%) and
heterogeneity were both independent risk factors for the de-
velopment of new neurological events.

Histological studies have also provided us with signif-
icant insight into what makes plaques become unstable.
We know that stable atherosclerotic plaques are character-
ized by a thick fibrous cap, a small lipid core, richness in
smooth muscle cells (SMC) that produce collagen, with few
macrophages. On the other hand, unstable plaques that are
prone to rupture are characterized by a thin fibrous cap,
a large lipid core, with few smooth muscle cells, and a large
number of macrophages [18]. Thus, as expected, the pres-
ence of large lipid concentrations are associated with insta-
bility. We will return to this point in our discussion of the
results.

In our own research, we have focused our efforts on the
use of multi-feature multi-classifier systems that can be used
to predict whether a plaque will become symptomatic or
asymptomatic. To help establish a connection with the med-
ical literature, we developed an image normalization method
using blood and adventitia [19]. Thus, we applied histogram
stretching with blood set at zero and adventitia set at 190
(out of a maximum of 255). This led to a significant reduc-
tion of inter and intra-observer variability [20, 21].

Compared to our previous attempts at classifying symp-
tomatic versus asymptomatic plaques [6–9], the current pa-
per reports on the most comprehensive comparative study



Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images 5

where we establish a correspondence between multi-level
morphology and the use of hypoechoic, isoechoic and hype-
rochoic plaque classifications. In what follows, low-image,
middle-image and hi-image correspond to hypoechoic, isoe-
choic and hyperechoic image components. Besides the vis-
ible correspondence, it is important to note that we have
not yet established clinical equivalence (that would have re-
quired histological studies). Furthermore, for measuring ho-
mogeneity and heterogeneity, we propose the use of mor-
phological pattern spectrum as a non-subjective measure.

In contrast to multi-level morphology, grey-scale mor-
phology provides for a method to characterize heterogeneity
that depends on the inter-relationships of hypoechoic, isoe-
choic and hyperechoic components. Clinically, as we have
already discussed, this approach was used by AbuRahma
who classified plaques as heterogeneous if they were com-
posed of a mixture of hypoechic, isoechoic and hyperechoic
components [16]. This characterization cannot be captured
using multi-level morphological methods since image analy-
sis is performed on each one of the components separately
(as we discuss later).

Our prior research was primarily focused on the use of
texture features and gray-level morphological methods. In
this paper, for the first time, we provide a detailed mathemat-
ical characterization of the pattern spectra components. We
also give comprehensive comparisons between grayscale
morphology, multi-level morphology and texture features
on the same data sets, with the application of the decision
trees algorithm for combining features (the application is
also new). Furthermore, none of our previous comparisons
reported on the specificity and sensitivity of our classifiers
(or the number of false positives and false negatives). No
significant attempt was made at relating the findings with
the related medical literature. Also, as we shall later discuss,
the paper will demonstrate (for the first time) that by simply
using low-image pattern spectra, we can provide superior
classification performance with a system that is significantly
simpler than the multi-feature multi-classifier systems in our
prior work. These results are new.

2 Material: image acquisition, normalization and
segmentation

A total of 274 carotid plaque ultrasound images (137 asymp-
tomatic plaques and 137 symptomatic plaques) associated
with retinal or hemispheric symptoms (33 stroke, 60 TIA,
and 44 AF). Patients with cardioembolic symptoms or dis-
tant symptoms (>6 months) were excluded from the study.
Asymptomatic plaques were truly asymptomatic if they had
never been associated with symptoms in the past where
as symptomatic if they had been associated with retinal or
hemispheric symptoms (Stroke, TIA or AF), i.e. unstable
plaques.

The ultrasound images were collected in the Irvine Labo-
ratory for Cardiovascular Investigation and Research, Saint
Mary’s Hospital, UK, using an ATL (model HDI 3000—
Advanced Technology Laboratories, Seattle, USA) duplex
scanner with a linear broadband width 4–7 MHz (mul-
tifrequency) transducer, at approximately a resolution of
20 pixels/mm.

The gray scale images (gray levels 0–255) were normal-
ized manually by adjusting the image linearly so that the me-
dian gray level value of blood was in the range of 0–5, and
the median gray level of adventitia (artery wall) was in the
range of 180–190 [21]. This normalization (i.e. using blood
and adventitia as reference points) was necessary in order
to extract comparable measurements in case of processing
images obtained by different operators or different equip-
ment [21].

The plaque identification and segmentation tasks are
quite difficult and were carried out manually by a physician
or vascular ultrasonographer who are experienced in scan-
ning. The main difficulties are due to the fact that the plaque
edges cannot be distinguished from blood based on bright-
ness level difference, or using only texture features, or other
measures. Also calcification and acoustic shadows make the
problem more complex. Thus, acoustic shadows were ex-
cluded. A system for facilitating the automated segmenta-
tion of carotid plaques based on snakes is currently under
development by our group [22].

3 Morphological analysis

Morphological features are motivated from the need to study
the basic structure of the plaque. We use two morphological
analysis methods in order to quantify morphological fea-
tures of the plaques. The first one is based on a multilevel
approach where the image intensity is thresholded at three
different levels, while the second one is based on gray scale
morphological analysis.

Morphological features of plaques are strongly associ-
ated with events. For example black (echolucent) plaques
with white big blobs are considered to be very dangerous.
From a structural perspective, morphological methods allow
us to provide size distributions for different components of
the plaque. We provide a more detailed discussion on the re-
lationship between morphological methods and clinical ex-
pectations in Sect. 3.1.

We will next provide a mathematical description of the
Pattern Spectrum. In developing the mathematical descrip-
tion, our attempt is to provide an intuition into what the Pat-
tern Spectrum is measuring and how the measurements re-
late to plaque image analysis. Our presentation is closely
related to previously published work in [23, 24].
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Pattern spectra are defined in terms of translations and
dilations of a single structural element. For the morphologi-
cal analysis carried out in this research we consider the cross
‘+’ structural element. The cross structural element exhibits
limited directional selectivity. This is desirable since there is
no clearly preferred direction for the analysis. We let the set
B to represent the ‘+’ structural element, and define it by its
five pixel coordinates

B = {(−1,0), (0,0), (1,0), (0,−1), (0,1)}. (1)

We define discrete-set translation by points using

B + p = {(m + i, n + j) : (m,n) ∈ B},
where p = (i, j). (2)

In B + p, we are centering the structural element over the
point p = (i, j). We define binary dilation using

X ⊕ B =
⋃

p∈B

X + p = {a + b : a ∈ X and b ∈ B}. (3)

The definition leads to the definition of kB that denotes the
k-fold expansion of B , and is given by

kB =

⎧
⎪⎨

⎪⎩

{(0,0)}, k = 0,

B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
k−1dilations

, for integer k > 1. (4)

Pattern spectra are defined in terms of openings and closings
with kB . We do not have any clear clinical interpretation for
the pattern spectra generated by closings with kB . Thus, we
will only focus on the pattern spectra generated by openings
with kB . In what follows, we provide detailed descriptions
of the two morphological methods in Sects. 3.1 and 3.2. In
Sect. 3.3, we provide a summary of how the two methods
were applied.

3.1 Multilevel binary morphological analysis

In multilevel binary morphological analysis we are inter-
ested in extracting different plaque components and inves-
tigating their geometric properties. We begin by generating
three binary images by thresholding:

L = {(i, j):such that f (i, j) < 25},
M = {(i, j):such that 25 ≤ f (i, j) ≤ 50},
H = {(i, j):such that f (i, j) > 50}.

(5)

Here, binary image outputs are represented as sets of im-
age coordinates where image intensity meets the threshold
criteria. Overall, this multilevel decomposition is closely re-
lated to a three-level quantization of the original image in-
tensity. To see this, note that we can simply assign quanti-
zation levels to each of the pixels in L, M , H and then use

them to provide an approximate reconstruction of the origi-
nal image.

In L, we want to extract dark image regions representing
blood, thrombus, lipid or haemorrhage. Similarly, in H , we
want to extract the collagen and calcified components of the
plaque, while in M , we want to extract image components
that fall between the two. Thus, to decide the threshold levels
of (5), we varied the threshold levels so as to extract the
desired components from the plaques.

In what follows, we introduce the use of morphological
pattern spectra for analyzing the extracted binary images.
Our motivation lies in analyzing the structural components
of each binary image. We provide a few examples motivated
by clinical (visual) observations (see Sect. 1.2 for a more
detailed discussion).

Note that if the plaque is captured as a single compo-
nent in the high intensity image (H), then the plaque is
most likely to be stable with little chance for rupture. This
comes from the fact that such plaques can be characterized
as homogeneous with calcified or collagen components (also
see Sect. 1.2). Also, the plaque will most likely be asymp-
tomatic if the lipid core regions in the low intensity image
are made up of small, scattered components. The most dan-
gerous cases occur when image components in the middle
image (M) appear to be very thin. The risk may be less
when image components in the middle image appear rela-
tively thick. This expectation assumes that the thin compo-
nents represent a thin fibrous cap, a well known characteris-
tic of unstable plaques (see Sect. 1.2).

We also expect that black (echolucent) plaques with
white big blobs to be very dangerous. In this case, we would
expect to see large components in both the low image and
the high image intensity images (see Fig. 1). These plaques
can be characterized as heterogeneous with large lipid cores.

We compute normalized pattern spectra for each one of
the three binary images L, M , H . Thus, in the following
discussion, we will use the symbol X to denote any one of
the three binary images L, M , H . Binary image erosion is
defined using

X � B =
⋂

p∈B

X − p = {a : B + a ⊆ X}. (6)

An opening is then defined in terms of an erosion followed
by a dilation:

X ◦ B = (X � B) ⊕ B. (7)

In general, an opening reduces the input image X � B ⊆ X.
However, when the input image can be expressed in terms
of translations of the structural element B , the opening op-
eration will preserve the input image. We thus write

X ◦ B = X (8)
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Fig. 1 The three binary level
images: (L, M , H ) of an
asymptomatic and a
symptomatic carotid plaque

when

X =
⋃

p∈S

B + p = B ⊕ S = S ⊕ B (9)

for some set of possible translates S. This follows from
([24], see (10)). From (8–9), we note that an opening will
not alter the binary input image provided that the binary im-
age components are “thick and rough enough” to contain all
translates of the structural element. On the other hand, any
isolated components of X that are smaller than B will be
removed by the opening operation. Here, we define smaller
in terms of set operations. We say that a binary image set A

is smaller than another binary image set B if A is a proper
subset of a translation of B . Conversely, any isolated com-
ponents of X that are larger than B will not be totally re-
moved from the opening operation (where larger is defined
in a similar way).

In general, for any given binary image, an opening out-
puts an approximation to the input image. This approxima-
tion is expressed as a union of translations of the structural
element [24]:

X ◦ B =
⋃

B+z⊆X

B + z. (10)

The approximation error image is defined in terms of the set
difference X − X ◦ B . We quantify the approximation error
by counting the number of pixels in the difference image.
We write A(S) to denote the cardinality of the set S.

For measuring the binary components at different scales,
we consider a sequence of openings with the dilated struc-
tural element (see (4)):

X,X ◦ B,X ◦ 2B, . . . ,X ◦ nB. (11)

For our plaque images, we note that the plaques are seg-
mented, and image intensity outside the plaque is assigned
to zero (see Fig. 1). Thus, for a sufficiently large value of
k, kB will outgrow the support of the plaque. When this hap-
pens, the opening operation will return the empty-set im-
age. We thus pick n to be the smallest integer for which
X ◦ (n + 1)B = ∅.

For computing (11), we note that a single opening is
needed each time, since the openings can be computed re-
cursively using X ◦ (n+ 1)B = (X ◦nB) ◦B . It is also clear
from this recursive relationship that the openings generate
decreasing images

X ◦ nB ⊆ · · · ⊆ X ◦ 2B ⊆ X ◦ B ⊆ X (12)

with decreasing areas

A(X ◦ nB) ≤ · · · ≤ A(X ◦ 2B) ≤ A(X ◦ B) ≤ A(X). (13)
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We form the set difference images using

d0(X;B) = X − X ◦ B,

d1(X;B) = X ◦ B − X ◦ 2B,

...

dn−1(X;B) = X ◦ (n − 1)B − X ◦ nB.

(14)

The difference images are orthogonal with respect to set in-
tersection

di(X;B) ∩ dj (X;B) = ∅ when i 
= j. (15)

We can reconstruct the image using the difference images

X = (X ◦ nB) ∪
(

n−1⋃

i=0

di(X;B)

)

=
n⋃

i=0

di(X;B). (16)

We think of the image decomposition given by (16) as a mul-
tiscale decomposition where the difference images di(f ;B)

represent information captured at the i-th scale.
The pattern spectrum is also defined in terms of the num-

ber of elements in the difference images

PSX(n,B) = A(dn(X;B)). (17)

In (17), we note that the pattern spectra vary with the size of
the plaque.

To remove this dependency, we consider a probability
density function (pdf ) measure defined as

pdf X(k,B) = A(dk(X;B))/A(X) for k ≥ 0. (18)

In (18), we note that the normalization is motivated by the
reconstruction formula (see (16)). Given the pdf -measure,
we can also construct the cumulative distribution function
(cdf ) using

cdf f (k,B) =
{

0, k = 0,

∑k−1
r=0 pdf f (r,B), n + 1 ≥ k > 0.

(19)

3.2 Gray scale morphological analysis

For gray scale morphological analysis, we assume that the
input image f (i, j) denotes the (positive) gray scale image
intensity at pixel (i, j). At every pixel, for structural ele-
ment B , we define gray scale dilation by

(f ⊕ B)(i, j) = max
(m,n)∈B+(i,j)

f (m,n) (20)

which represents the maximum intensity value over the sup-
port of the translated structural element. Similarly, for sym-
metric structural elements (as is the case for ‘+’), we define
gray scale erosion using the minimum value:

(f � B)(i, j) = min
(m,n)∈B+(i,j)

f (m,n). (21)

We then define openings using the new definitions for grey-
scale erosions and dilations. Instead of the subset relation,
we now have that an opening reduces image intensity in the
sense that f ◦ B ≤ f for every pixel.

Due to the bounds of the extend of the plaque, we are
again limited in the maximum number of openings that
make sense. Here, instead of the empty set, the limit is the
zero-image. The difference images are formed in the same
way. For the reconstruction, we use a finite sum instead of a
union:

f = (f ◦ nB) +
(

n−1∑

i=0

di(f ;B)

)

=
n∑

i=0

di(f ;B). (22)

For the gray scale definition of the pattern spectrum we use

PSf (k,B) = ‖dk(f ;B)‖, (23)

where

‖f ‖ =
∑

(i,j)

f (i, j). (24)

We then normalize by the original image intensity

pdf f (k,B) = ‖dk(f ;B)‖/‖f ‖, for k ≥ 0. (25)

3.3 Morphological analysis application to atherosclerotic
carotid plaques

We begin with a summary. For each plaque we compute the
three binary images L, M , H as outlined in (5). For each
binary image, we compute the pdf and cdf distributions as
outlined in (18–19), for k = 0, . . . ,70. Similarly, for gray
scale morphological image analysis, we compute the pdf
and cdf distributions based on gray scale erosions and di-
lations (see (25)). Thus, we compute pdf and cdf measures
on the original gray scale image and the three binary images
that are derived from it.

For each one of the four images, the positively-indexed
pdf and cdf measures provide us with normalized size dis-
tributions of the white (or brighter) blob-components. These
measures are based on binary and gray scale openings. Some
examples are shown in Fig. 2. We provide a more detailed
discussion in the results section.
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Fig. 2 Results from a sequence
of openings using a ‘+’
structural element on a gray
level and a low-intensity image
(L-image in multi-level binary
morphology) of an
asymptomatic carotid plaque.
The radius of the structural
element ranges from 1 to 5
pixels (plotted at 20 pixels/mm)

4 Classification models

The diagnostic performance of the morphological features
was evaluated with two different classifiers: the Probabilis-
tic Neural Network (PNN), and the Support Vector Ma-
chine (SVM). These classifiers were trained to classify the
morphology features into two classes: (i) asymptomatic
plaques or (ii) symptomatic plaques associated with retinal
or hemispheric symptoms (Stroke, TIA or AF), i.e. unstable
plaques.

4.1 The PNN classifier

A Probabilistic Neural Network (PNN) classifier was used
for developing classification models for the problem under
study. The PNN falls within the category of nearest-neighbor

classifiers [25]. For a given vector w to be classified, an acti-
vation ai is computed for each of the two classes of plaques
(i = 1, . . . ,2). The activation ai is defined to be the total
distance of w from each of the Mi prototype feature vectors
x(i)
j that belong to the i-th class:

ai =
Mi∑

j=1

exp[−β(w − x(i)
j )T (w − x(i)

j )], (26)

where β is a smoothing factor. The normalized activations
ãi = ai/

∑N
i=1 ai provide a confidence estimate for the hy-

pothesis that w belongs to class i. We then classify w into
the class that yields the highest confidence. An important ad-
vantage of the PNN is that it provides confidence estimates
for our classification decision. Also, to avoid dependence on
the smoothing factor β , the value of β was set to the one that
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yielded the minimum misclassification error on the training
set.

This classifier was investigated for several spread radii in
order to identify the best radius for the current problem.

4.2 The SVM classifier

The Support Vector Machine (SVM) was also used for de-
veloping classification models for the problem. The method
is initially based on a nonlinear mapping of the initial data
set using a function ϕ(.) and then the identification of a hy-
perplane which is able to achieve the separation of two cate-
gories of data. Details about the implementation of the SVM
algorithm used can be found in [26].

The SVM network was investigated using Gaussian Ra-
dial Basis Function (RBF) kernels; this was decided as the

rest of the kernel functions could not achieve satisfactory
results. The SVM with RBF kernel was investigated using
10-fold cross validation in order to identify the best parame-
ters such as the spread of RBF [26].

4.3 Classification tests

The leave-one-out estimate was used for validating all the
classification models. A total of 274 subsets of size 273 were
used for training the classifiers, and the performances of the
classifiers were evaluated on the remaining one subset.

The performances of the classifier systems were mea-
sured using the receiver operating characteristics (ROC)
curve parameters [27]. The parameters calculated for ROC
curves are the numbers of: (i) true positives (TP) when the
system correctly classifies plaques as symptomatic, (ii) false

Fig. 3 Corresponding median values of the pdfs and cdfs of asymp-
tomatic versus symptomatic plaques for the three different levels (L,
M , H images) of multilevel binary morphological analysis. The first
line of each sub-plot represents the median cdf and pdf for Asymp-

tomatic Vs Amaurosis Fugax Vs (TIA&Stroke) plaques, while the
second line represents the median cdf and pdf for Asymptomatic Vs
Symptomatic plaques. In the plot, radius refers to radial spread of the
structural element
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Fig. 3 (continued)

positives (FP) where the system wrongly classifies plaques
asymptomatic while they are asymptomatic, (iii) false neg-
atives (FN) when the system wrongly classifies plaques as
asymptomatic while they are symptomatic, and (iv) true neg-
atives (TN) when the system correctly classifies plaques as
asymptomatic. We also compute the Sensitivity (SE) which
is the likelihood that a symptomatic plaque will be detected
given that it is symptomatic and Specificity (SP) which is the
likelihood that a plaque will be classified as asymptomatic
given that is asymptomatic. For the overall performance, we
provide the correct classification (CC) rate which gives the
percentage of correctly classified plaques.

5 Results

The median of the estimated pdfs and cdfs extracted from the
plaques can be seen in Figs. 3 and 4. All figures are plotted

against the radial size of the structural element. We have di-
vided the results into the two categories of multilevel binary
and gray scale morphological analysis. We provide a critical
discussion in Sect. 5.3.

5.1 Results from multilevel binary morphological analysis

From the results, we observe that the median symptomatic
cdf is stochastically smaller than the median asymptomatic
cdf for the L-images.This means that the median cdf for
the symptomatic cases assumes equal or smaller values than
the asymptomatic cdf. The median and box plots of pdfs and
cdfs for L, M and H images can be seen in Figs. 5, 6, 7
respectively.

For the M-images, the median cdf of the asymptomatic
cases turned out to be stochastically larger to that of
TIA&Stroke but smaller to that of Amaurosis Fugax; thus
the median cdfs of asymptomatic and symptomatic plaques
are almost equal. Due to these observations, as expected, the
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Fig. 3 (continued)

classification results from the M-images where relatively
lower. Finally, for the H -images, the median symptomatic
cdf turned out to be stochastically larger than the asymp-
tomatic cdf.

The cdf s and pdf s of all plaques were used with the PNN
and SVM classifiers. Both classifiers were tested on both the
pdf and cdf feature sets. The first set included features pro-
duced for the whole range of scales (1–70) while the second
set included the pattern spectra of selected scales (L-Images:
1, 2, 3, 4, 5, M-Images: 3, 4, 9, 11, 12, H -Images: 2, 11, 12,
15, 18, also see [28, 29]). These scales were selected because
of their discriminatory power as evaluated using the C4.5 de-
cision trees algorithm [30]. The C4.5 was run and the pattern
spectra scale with the highest discriminative score was com-
puted. This best scale was then removed and the C4.5 was
run again to compute the next best scale. The procedure was
repeated 5 times. The dimensionality of the entire pdf/cdf
feature vectors from both sets was also reduced using Prin-
cipal Components Analysis (PCA). For PCA, we selected a

small number of components that accounted for 98% of the
total variance.

Table 1 presents the results of the ROC analysis for the
SVM and PNN classifiers for the different feature sets in-
vestigated. Classifiers were tested using features extracted
from the L, M and H images and the combination of the
three. The highest percentage of correct classifications score
was 73.7% and was achieved using the SVM classifier on
the features extracted from the L-images (cdf scales: 1–70
+ PCA). For PNN, the highest percentage of correct clas-
sifications score achieved was 70.4% for pdf scales: 1–70
+ PCA. The combination of the three feature sets gave the
same highest results as those achieved with the L-images
feature set.

5.2 Results from gray scale morphological analysis

From the results, we can observe that the median symp-
tomatic cdf is stochastically larger than the median asymp-
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Fig. 4 Corresponding median values of the pdfs and cdfs of asymp-
tomatic versus symptomatic plaques for the gray scale morphological
analysis. The first row represents the median cdf and pdf for Asymp-

tomatic Vs Amaurosis Fugax Vs (TIA & Stroke) plaques, while the
second represents median cdf and pdf for Asymptomatic Vs Symp-
tomatic plaques

tomatic cdf. Recall that this means that the median cdf
for the symptomatic cases assumes equal or larger values
than the asymptomatic cdf. The median and box plots of
pdfs and cdfs for gray scale morphological can be seen in
Fig. 8.

Again the cdf s and pdf s of all plaques were used with
the PNN and SVM classifiers. Both classifiers were tested
on both the pdf and cdf feature sets. The first set included
features produced for the whole range of scales (1–70) while
the second set included the pattern spectra of selected scales
(2, 3, 5, 10, 21, and 23) [29], using the C4.5 decision trees
algorithm [30] (see Sect. 5.1)

Table 2 presents the results of the ROC analysis for the
SVM and PNN classifiers for the different feature sets in-
vestigated. The highest percentage of correct classifications
score was 66.7% and was achieved using the SVM classi-
fier on the second set of data (pdf scales: 2, 3, 5, 10, 21,

and 23 + PCA). For PNN, the highest percentage of correct
classifications score achieved was 62.04% for cdf scales:
1–70.

5.3 Discussion

An important contribution of this paper is that it reports
on the most successful classification results (73.7%) using
the pattern-spectra from the low-image components of the
plaque. Thus, in contrast with our prior work where the
best results had resulted from the use of multiple features
and multiple classifiers, we have found that there is virtu-
ally nothing to be gained over the use of low-image pattern
spectra. We note that this finding is in strong agreement with
clinical findings on the hypoechoic images (see [12–17] and
our discussion in Sect. 1.2).
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Fig. 5 a Median probability density function (pdf) and cumulative dis-
tribution function (cdf) plots for the pattern spectra of the L images; the
symptomatic plot is plotted with a solid line while the asymptomatic
one with a dotted line. b Box plots of the pdf and the cdf for the asymp-
tomatic carotid plaques. c Box plots of the pdf and the cdf for the
symptomatic carotid plaques. Box plots are described as follows: The

notched box shows the median, lower and upper quartiles and con-
fidence interval around the median for each feature. The dotted line
connects the nearest observations within 1.5 of the inter-quartile range
(IQR) of the lower and upper quartiles. Crosses (+) indicate possible
outliers with values beyond the ends of the 1.5 × IQR. In the plot, ra-
dius refers to the index of the normalized pdf s and cdf s (see (25))



Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images 15

Fig. 6 a Median probability density function (pdf) and cumulative dis-
tribution function (cdf) plots for the pattern spectra of the M-images;
symptomatic plot is plotted with a solid line while the asymptomatic

one with a dotted line. b Box plots of the pdf and cdf for the asymp-
tomatic carotid plaques. c Box plots of pdf and cdf for the symptomatic
carotid plaques
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Fig. 7 a Median probability density function (pdf) and cumulative dis-
tribution function (cdf) plots for the pattern spectra of the H -images;
symptomatic plot is plotted with a solid line while the asymptomatic

one with a dotted line. b Box plots of the pdf and cdf for the asymp-
tomatic carotid plaques. c Box plots of the pdf and cdf for the symp-
tomatic carotid plaques
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Table 1 Percentage of correct classifications (%CC), percentage of
false positives (%FP), percentage of false negatives (%FN), percentage
sensitivity (%SE) and percentage specificity (%SP) of Multi Level mor-
phological features using the SVM and PNN classifiers, for the L, M

and H images. Classification models developed for two classes using
the leave one out method, with 137 symptomatic and 137 asymptomatic
plaques

L Image

SVM classifier %CC %FP %FN %SE %SP

SVM rbf spread = 0.4 70.80 42.34 16.06 83.94 57.66

PCA for pdf scales 1,2,3,4,5,6

SVM rbf spread = 9.0510 69.71 51.09 9.49 90.51 48.91

pdf scales 1,2,3,4,5,6

SVM rbf spread = 0.1 73.72 36.50 16.06 83.94 63.50

PCA for cdf scales 1–70

SVM rbf spread = 12.8 72.26 37.23 18.25 81.75 62.77

cdf scales 1–70

SVM rbf spread = 1.6 70.07 43.07 16.79 83.21 56.93

PCA for pdf scales 1–70

SVM rbf spread = 9.0510 70.80 41.61 16.79 83.21 58.39

pdf scales 1–70

Average Values 71.23 41.97 15.57 84.43 58.03

L Image

PNN classifier %CC %FP %FN %SE %SP

PNN spread = 5 66.79 62.77 3.65 96.35 37.23

PCA for pdf scales 1,2,3,4,5,6

PNN spread = 5 66.79 63.50 2.92 97.08 36.50

pdf scales 1,2,3,4,5,6

PNN spread = 5 70.07 37.96 21.90 78.10 62.04

PCA for cdf scales 1–70

PNN spread =5 70.07 37.96 21.90 78.10 62.04

cdf scales 1–70

PNN spread = 5 70.44 40.88 18.25 81.75 59.12

PCA for pdf scales 1–70

PNN spread = 5 69.71 35.77 24.82 75.18 64.23

pdf scales 1–70

Average Values 68.98 46.47 15.57 84.43 53.53

M Image

SVM classifier %CC %FP %FN %SE %SP

SVM rbf spread = 0.1414 60.58 45.99 32.85 67.15 54.01

PCA for pdf scales 3,4,9,11,12

SVM rbf spread = 0.1 59.49 47.45 33.58 66.42 52.55

pdf scales 3,4,9,11,12

SVM rbf spread = 2.2627 55.47 34.31 54.74 45.26 65.69

PCA for cdf scales 1–70

SVM rbf spread = 0.2 59.12 29.93 51.82 48.18 70.07

cdf scales 1–70

SVM rbf spread = 0.4 58.39 37.96 45.26 54.74 62.04

PCA for pdf scales 1–70

SVM rbf spread = 0.1 58.39 37.96 45.26 54.74 62.04

pdf scales 1–70

Average Values 58.57 38.93 43.92 56.08 61.07
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Table 1 (continued)

M Image

PNN classifier %CC %FP %FN %SE %SP

PNN spread = 5 48.18 10.95 92.70 7.30 89.05

PCA for pdf scales 3,4,9,11,12

PNN spread = 5 48.18 10.95 92.70 7.30 89.05

pdf scales 3,4,9,11,12

PNN spread = 5 49.27 9.49 91.97 8.03 90.51

PCA for cdf scales 1–70

PNN spread = 5 48.91 11.68 90.51 9.49 88.32

cdf scales 1–70

PNN spread = 5 51.46 9.49 87.59 12.41 90.51

PCA for pdf scales 1–70

PNN spread = 5 51.09 9.49 88.32 11.68 90.51

pdf scales 1–70

Average Values 49.52 10.34 90.63 9.37 89.66

H Image

SVM classifier %CC %FP %FN %SE %SP

SVM rbf spread = 9.0510 58.76 47.45 35.04 64.96 52.55

PCA for pdf scales 2,11,12,15,18,19

SVM rbf spread = 12.8 58.39 47.45 35.77 64.23 52.55

pdf scales 2,11,12,15,18,19

SVM rbf spread = 6.4 59.12 42.34 39.42 60.58 57.66

PCA for cdf scales 1–70

SVM rbf spread = 0.4 59.12 41.61 40.15 59.85 58.39

cdf scales 1–70

SVM rbf spread = 9.0510 62.04 40.88 35.04 64.96 59.12

PCA for pdf scales 1–70

SVM rbf spread = 0.8 60.22 45.26 34.31 65.69 54.74

pdf scales 1–70

Average Values 59.61 44.17 36.62 63.38 55.84

H Image

PNN classifier %CC %FP %FN %SE %SP

PNN spread = 5 43.80 24.82 87.59 12.41 75.18

PCA for pdf scales 2,11,12,15,18,19

PNN spread = 5 43.80 24.82 87.59 12.41 75.18

pdf scales 2,11,12,15,18,19

PNN spread = 5 59.12 48.18 33.58 66.42 51.82

PCA for cdf scales 1–70

PNN spread = 5 58.76 48.91 33.58 66.42 51.09

cdf scales 1–70

PNN spread = 5 57.66 64.23 20.44 79.56 35.77

PCA for pdf scales 1–70

PNN spread = 5 55.47 65.69 23.36 76.64 34.31

pdf scales 1–70

Average Values 53.1 46.11 47.69 52.31 53.89
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Table 1 (continued)

Combination L M H Images

SVM classifier %CC %FP %FN %SE %SP

SVM rbf spread = 6.4 71.90 43.07 13.14 86.86 56.93

PCA for pdf scales (Low: 1,2,3,4,5,6) (Med: 3,4,9,11,12) (High: 19,12,15,11,18,2)

SVM rbf spread = 6.4 71.90 45.26 10.95 89.05 54.74

pdf scales (Low: 1,2,3,4,5,6) (Med: 3,4,9,11,12) (High: 19,12,15,11,18,2)

SVM rbf spread = 12.8 69.34 43.80 17.52 82.48 56.20

PCA for cdf scales 1–210

SVM rbf spread = 2.2627 71.90 39.42 16.79 83.21 60.58

cdf scales 1–210

SVM rbf spread = 9.0510 70.80 42.34 16.06 83.94 57.66

PCA for pdf scales 1–210

SVM rbf spread = 6.4 73.36 39.42 13.87 86.13 60.58

pdf scales 1–210

Average Values 71.53 42.22 14.72 85.28 57.78

Combination L M H Images

PNN classifier %CC %FP %FN %SE %SP

PNN spread = 5 69.34 53.28 8.03 91.97 46.72

PCA for pdf scales (Low: 1,2,3,4,5,6) (Med: 3,4,9,11,12) (High: 19,12,15,11,18,2)

PNN spread = 5 69.71 54.01 6.57 93.43 45.99

pdf scales (Low: 1,2,3,4,5,6) (Med: 3,4,9,11,12) (High: 19,12,15,11,18,2)

PNN spread = 5 69.71 37.96 22.63 77.37 62.04

PCA for cdf scales 1–210

PNN spread = 5 68.61 40.15 22.63 77.37 59.85

cdf scales 1–210

PNN spread = 5 70.44 42.34 16.79 83.21 57.66

PCA for pdf scales 1–210

PNN spread = 5 70.07 38.69 21.17 78.83 61.31

pdf scales 1–210

Average Values 69.65 44.41 16.3 83.7 55.6

Returning to the established clinical knowledge on the
stability of atherosclerotic plaques, we note that the
L-images capture the lipid content (as well as other non-
lipid structures: thrombus, blood or haemorrhage). Thus, to
the extend that these L-images reflect lipid content, it is clear
that we would expect that pattern spectra that are highly
concentrated at the lower scales would also characterize sta-
ble, asymptomatic plaques. Again, this is in agreement with
the clinical finding that large lipid cores are found in un-
stable plaques while small lipid concentrations are found
in stable plaques [18]. A careful inspection of the L-
images of Figs. 3 and 5 shows a dramatic demonstration
of how this information is captured in the PDF. Clearly,
the asymptomatic plaques have a “spiky” PDF concentrated
in the lower scales, while the symptomatic plaques gave a
significant PDF spread over all scales. Also, note that the

PDF spread of the symptomatic plaques is consistent with
the presence of large lipid cores. To further recognize the
clinical significance of this finding, we note that our med-
ical team has decided to use the pattern spectra of these
L-images in the routine clinical exams to screen patients for
the presence of symptomatic plaques.

In contrast, we may expect large components in the
H -images to reflect plaque stability. This comes from the
fact that H -images capture calcified and collagen compo-
nents that are unlikely to rupture [18]. However, it is also
important to note that plaque instability does not account
for significant stenosis where a stable plaque will not rup-
ture, but will grow to disrupt blood supply. In any case,
in Figs. 3 and 7, we can see that the PDFs of the asymp-
tomatic plaques are somewhat more spread-out than for
the symptomatic plaques. In Fig. 7, it is also clear that
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Fig. 8 a Median probability density function (pdf) and cumulative dis-
tribution function (cdf) plots for the pattern spectra of gray scale im-
ages; symptomatic plot is plotted with a solid line while the asymp-

tomatic one with a dotted line. b Box plots of pdf and cdf for the
asymptomatic carotid plaques. c Box plots of pdf and cdf for the symp-
tomatic carotid plaques

asymptomatic outliers occur at very high scales as com-
pared to much fewer such outliers in the asymptomatic
plaques.

In the specific example of Fig. 1 we can see how the solid
components in the L-image are indicative of plaque instabil-
ity. The hypoechoic components of the symptomatic plaque

of Fig. 1 will clearly produce a large number of components
in its PDF decomposition. Furthermore, it is important to
recognize the lack of any large components in the H -image
of the lower half of the symptomatic plaque. Based on cur-
rent clinical knowledge, we would expect that the lower-half
of the symptomatic plaque will rupture, especially since it is
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Table 2 Percentage of correct classifications (%CC), percentage of
false positives (%FP), percentage of false negatives (%FN), percent-
age sensitivity (%SE) and percentage specificity (%SP) of Gray Scale

morphological features using the SVM and PNN classifiers. Classifica-
tion models developed for two classes using the leave one out method,
and 137 symptomatic and 137 asymptomatic plaques

Gray Scale

SVM classifier %CC %FP %FN %SE %SP

SVM rbf spread = 2.2627 66.79 20.44 45.99 54.01 79.56

PCA for pdf scales 2,3,5,10,21,23

SVM rbf spread = 0.5657 65.33 28.47 40.88 59.12 71.53

pdf scales 2,3,5,10,21,23

SVM rbf spread = 2.2627 63.14 42.34 31.39 68.61 57.66

PCA for cdf scales 1–70

SVM rbf spread = 2.2627 62.41 32.12 43.07 56.93 67.88

cdf scales 1–70

SVM rbf spread = 1.1314 60.22 43.80 35.77 64.23 56.20

PCA for pdf scales 1–70

SVM rbf spread = 0.5657 63.14 36.50 37.23 62.77 63.50

pdf scales 1–70

Average Values 63.51 33.95 39.06 60.95 66.06

Gray Scale

PNN classifier %CC %FP %FN %SE %SP

PNN spread = 5 56.57 22.63 64.23 35.77 77.37

PCA for pdf scales 2,3,5,10,21,23

PNN spread = 5 56.57 22.63 64.23 35.77 77.37

pdf scales 2,3,5,10,21,23

PNN spread = 5 60.58 36.50 42.34 57.66 63.50

PCA for cdf scales 1–70

PNN spread = 5 62.04 35.77 40.15 59.85 64.23

cdf scales 1–70

PNN spread = 5 58.76 42.34 40.15 59.85 57.66

PCA for pdf scales 1–70

PNN spread = 5 60.22 48.91 30.66 69.34 51.09

pdf scales 1–70

Average Values 59.12 34.8 46.96 53.04 65.2

most likely composed of a large lipid core with little colla-
gen or calcium to hold it together.

Based on our discussion, we can see that low-scales from
the L-images and higher-scales from the H -images should
lead to the best combinations of morphological features.
This is clearly demonstrated in the selected scales of Table 1.
For the L-images, the best scales were found to be the low-
est possible: 1–6 while all-but one of the best scales for the
H -images were found to be for scales that are larger than 10.
As mentioned in the results section, we select morphological
scales using the decision trees algorithm after PCA. Thus,
the resulting scales that were selected provide the largest
discriminatory power from the pattern spectra that captured
most of the variance.

Compared to multi-level morphology, we find it a little
harder to relate the results from gray-scale morphology to
our clinical understanding of unstable plaques. Part of the
problem is surely due to the complexity of the different com-
ponents. A comparative example is given in Fig. 2. After a
careful inspection, it can be seen that the effect of grey scale
morphology is to “flatten-out” the different plaque compo-
nents, by producing large plaque components with lower im-
age intensity. Here, we recall that in the limit, the openings
will generate the zero-image. Clinically, we expect that het-
erogeneous plaques will be the symptomatic ones. Return-
ing to the example in Fig. 2, homogeneous plaques will be
characterized by uniform intensity regions. These large re-
gions will thus be expected to spread the pattern spectrum
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over the larger scales. Thus, symptomatic pattern spectra
will tend to dominate the asymptomatic pattern spectra over
the larger scales. Furthermore, since the spectra are normal-
ized, this would imply that the asymptomatic pattern spec-
tra will remain below the symptomatic pattern spectra at the
lower scales. This is clearly reflected in the PDF plots of
Figs. 4 and 8. On the other hand, in comparison, the morpho-
logical decomposition of the L-image appears much more
effective, with significant binary components being removed
at different sizes.

We can confirm that the appropriate scales were selected
to separate between the symptomatic and asymptomatic
plaques by comparing the average and median spectra in
Figs. 4 and 8. It is clear that the selected PCA components
around 10, 21, 23 reflect strong separations between the av-
erage and median spectra (recall that plaques are collected
at 20 pixels per mm, and thus, scale = 20 corresponds to
1 mm).

Between the Grey-scale PDF plots of Fig. 4 and the
L-image plots of Fig. 3, we can clearly see that the L-images
provided much better separations. This also explains the bet-
ter performance achieved through the use of the L-image
spectra.

6 Conclusions

The primary motivation behind this study was in the devel-
opment of morphological image analysis methods that have
strong connections to prior clinical studies on what consti-
tutes an unstable, symptomatic plaque. The clinical moti-
vations for the analysis was outlined in Sect. 1.2 and the
clinical connections were also made in the discussion of the
results in Sect. 5.3. Here, we note that the L-images alone
gave results that are slightly better than complicated multi-
feature multi-classifier systems (73.7% versus 73% of [5],
also see [4]).

However, a significant advantage of the study is that we
believe that there is a clear clinical explanation of why the
pattern spectra for L-images performed best. The L-images
capture the lipid components of the plaques (among other
components). From our clinical understanding of unstable
plaques, unstable plaques have large lipid components while
stable plaques have small lipid components. By examining
the average (and median) pattern spectra for symptomatic
and asymptomatic plaques, we can infer that pattern spec-
tra for the L-images must have captured this clinical fact.
Thus, our medical team has decided to use the pattern spec-
tra for the L-images in all future screening for symptomatic
plaques.

While our paper attempted to motivate the computational
analysis from a more clinical perspective, it is important to
outline some of the limits of our approach. Our focus on

morphological features, as well as our prior focus on com-
mon texture features, does not incorporate diagnostic infor-
mation regarding stenosis. Furthermore, we have not incor-
porated any obvious clinical factors such as smoking habits
and cholesterol levels. From the biomedical engineering per-
spective, future studies will have to investigate the corre-
spondence between non-invasive, 3D, multi-modality imag-
ing methods and 3D histological exams to develop hybrid
segmentation methods for segmenting out the various plaque
components (lipid, fibrous, blood, etc.). Then, 3D geometri-
cal models can be used to measure the different structural
components of the plaques. Following such an approach, we
will then want to measure the stress distributions over the
plaques, together with the materials that these stresses are
applied to. This approach will surely provide greater insight
into what causes plaques to rupture.
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