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1 2
SYSTEM AND METHODS OF The discrete Wavelet Transform (“DWT”) has also been
AMPLITUDE-MODULATION used for transform-based image processing. Unlike Fourier
FREQUENCY-MODULATION (AM-FM) Transforms, Wavelet Transforms are based on specific func-
DEMODULATION FOR IMAGE AND VIDEO tions defined at different scales and durations. Thus, the DWT

"
S

PRIORITY STATEMENT

This application claims the benefit of U.S. Provisional
Application No. 61/098,165 filed Sep. 18, 2008.

STATEMENT CONCERNING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
FA9453-06-C-0211 awarded by DARPA and R44EY018280
awarded by the National Institutes of Health. The government
has certain rights in the invention.

FIELD OF THE INVENTION

This invention relates to image and video processing. More
particularly, this invention is directed to a system and meth-
ods of Amplitude-Modulation Frequency-Modulation (“AM-
FM”) demodulation for processing stationary and non-sta-
tionary image and video content.

AM-FM demodulation is useful in a variety of contexts and
applications including, for example, characterization and
classification of image and video from imaging modalities
such as electron microscopy, spectral and hyperspectral
devices, ultrasound, magnetic resonance imaging (“MRI”),
positron emission tomography (“PET”), histology, color and
monochrome images, molecular imaging, radiographs (“X-
rays”), computer tomography (“CT”), and others. The spe-
cific applications are in fingerprint identification, detection
and diagnosis of retinal disease, malignant cancer tumors,
cardiac image segmentation, atherosclerosis characteriza-
tion. brain function. histopatholoev shecimen classification.

is related to harmonic analysis is as in Fourier Transform.
While FFT uses equally spaced frequency division, DWT
uses logarithmic divisions of the frequency. A disadvantage is
that DW'T does not measure frequency content directly.

The development of accurate methods for estimating
amplitude-modulation frequency-modulation image decom-
positions is of great interest due to is potentially significant
impact on image analysis applications including in the areas
of'signal, image and video processing. Applications in signal
processing include speech signal analysis. Image processing
applications include shape from shading, image pattern
analysis, image interpolation, fingerprint classification,
image retrieval in digital libraries, image segmentation, and
damaged image texture repairs. Applications in video pro-
cessing include cardiac image segmentation, motion estima-
tion, and motion reconstruction, to name a few.

Accurate system and methods for estimating AM-FM com-
ponents are important due to their potentially significant
impact on various applications. Thus, there is demand for
improved AM-FM demodulation for both stationary and non-
stationary processing for use in a variety of contexts and
applications. The present invention satisfies this demand.

SUMMARY OF THE INVENTION

The present invention is directed to multi-scale amplitude-
modulation frequency-modulation (“AM-FM”) demodula-
tion utilizing a multi-scale filterbank, instantaneous fre-
quency estimation based upon variable-spacing local linear
phase and multi-scale least square reconstruction for image
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For discrete videos, the discrete-space-time input signal is
given by I(k, .k, k;)=~a(k, k,.k;)cos ¢k, k,.k;), where k, and
k, represent the discrete versions of x and y, respectively, and
k, represents the discrete version of t. The conversion of the
estimated discrete frequencies back to continuous space is not
considered. The present invention produces an estimate of
a(ky,ko ks )exp(ok ko ks)) from aky k; ks)eos ¢k kyk;)
very fast. The discrete-space-time extended estimate of the
1-D analytic signal is defined as I s(k k5. k5). This is accom-
plished via the use of a discrete-time Hilbert Transform or
using the Fast Fourier Transform (“FFT”).

The 2D robust QEA method is extended to 3D such that T , ¢
is defined as:

Lastky, koks) =

Tastky, ko, ks)
|7as(kys ko, ks)|

_alky, ky, ks)exp(jelky, k2, k3))
atky, k2, k3)

= exp(jelk, k2, k3)).

Then, for the instantaneous frequency—assuming
dx=0y=0t=1—the following are obtained:
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ing are more specific examples of applications and context in
which the present invention pertains.
AM-FM demodulation techniques may be used for deter-
mining disease progressing in X-ray images for example
5 X-ray images presenting pneumoconiosis. The AM-FM fea-
tures are estimated using multi-scale filterbanks with instan-
taneous wavelengths related with the standard sizes for grad-
ing the level of opacities in X-rays. The AM-FM estimates
show correlation between opacity profusion and certain
instantaneous frequency and instantaneous amplitude in the
sense of the counts of their histograms. Histograms are
formed from extracted AM-FM features and a classificationis
determined using the extracted features. The instantaneous
frequency estimates computed in medium and high frequen-
cies are able to detect the first symptoms and appearance of
opacities in the chest. The instantaneous frequency estimates
computed in the range of low and medium frequencies reflect
the different grade when a disease is in various stages.

It should be noted that imaging modalities according to the
present invention that may produce a digital representation of
an anatomical and pathological structure including, for
example, standard color (“RGB”), ultrasound, radiograph,
computer tomography (“CT”) image slice, magnetic reso-
nance image (“MRI”), functional MRI (“f-MRI”), fluores-
cence images, molecular imaging, and any other imaging
modality that produces 2-D, 3-D or 4-D representations of the
structure.

AM-FM demodulation techniques may also be used for
describing atherosclerotic plaque features that are associated
with clinical factors such as the texture changes in the intima
media complex, the intima media, and the intima layer, as
they vary with a patient’s age. AM-FM analysis reveals sig-
nificant changes in the instantaneous amplitude and instanta-
35 neous frequency magnitude of the media and intima layer as
a function of patient age. The findings suggest that AM-FM
features can be used to assess the risk of stroke over a wide
range of patient populations. A texture image retrieval system
is contemplated that uses AM-FM features to retrieve intima
and intima media layer images that could be associated with
the same level of the risk of stroke.

AM-FM based methods also address some issues associ-
ated with the semantic gap between visual and mathematical
features presented by retinal diseases such as age-related
macular degeneration (“AMD”). Through the processing of
simulated and real, clinical retinal images, an understanding
is achieved of the effects of basis morphological characteris-
tics oflesions associated with AMD. Through synthetic simu-
lation, histograms of the instantaneous amplitude and the
instantaneous frequency magnitude, extracted from different
scales, can be used to differentiate between images of differ-
ent sizes and edge sharpness, while maintaining invariance
with respect to rotations. AM-FM features extracted from low
and very-low frequency scales can clearly differentiate
55 between retinal images containing Temporal Concentrated

50

P e ST Ry e e T




.
 —

7

ing features from individual scales as well as a final classifier
that combines results from the individual scales are used.

The present invention can also be used for the detection of
structures in the retina using AM-FM for diabetic retinopathy
classification. The presence and severity of AMD in current
epidemiological studies is detected by the grading of color
stereoscopic fundus photographs. It is contemplated that a
mathematical technique, AM-FM can be used to generate
multi-scale features for classity pathological structures, such
as druses, on a retinal image. Drusen can be differenced from
normal retinal structures by more than three standard devia-
tions using the AM-FM histograms. In addition, using differ-
ent color spaces perfect classification of structures of the
retina is achieved, which may be used in the development of
an automated AMD grading system.

Diabetic retinopathy (“DR”) severity levels can be
assigned to people with diabetes based on AM-FM from color
fundus photographs, which automatically adjusts all model

8

resolution enhancement, image analysis content-based image
retrieval and video activity detection to name a few.

Another object of the present invention is to provide an
efficient instantaneous frequency demodulation method tak-
ing advantage of optimal (in the min-max sense), multi-scale
filterbanks including 2D filterbanks and 3D filterbanks.

Another object of the present invention is to provide 2D
and 3D reconstruction methods using AM-FM models. Least-
squares reconstructions using AM-FM models provide effec-
tive 2D and 3D signals representations.

Yet another object of the present invention is to provide
methods for motion estimation that produce better estimates
over different scales.

Another object of the present invention is to provide meth-
ods for content-based video retrieval for activity recognition.

Another object of the present invention is to provide a
correlation between features that represent the frequency and
amplitude characteristics of an image and visual features seen
by an observer. Various visually recognized features can be
detected and defined using computer vision-based methods,

parameters based on the quality and format of the data. AM- 20 for example, fundus patterns (fundus phenotypes) and clas-
FM techniques according to the present invention are attrac- sification for retinal images.

tive for developing a system for detecting diabetic retinopathy Another object of the present invention is to provide real-
(“DR”) risk levels from retinal color photographs. It is con-  time classification of image quality. The present invention
templated that the automatic detection of abnormal regionsin ~ reduces computational time by not requiring explicit segmen-
digital color fundus images can be used for detection of other 25 tation of structures subject of the image.

retinal abnormalities indicative of a retinal disease including,
Juad coent b Lo - - - abebed e et — -2 4a

The present invention and its attributes and advantages will
ith referepce 1o the

—
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cally illustrating estimation of a single AM-FM component
from a single scale. For purposes of this application, the term
“scale” is defined as a collection of bandpass filters. As an
example, scales can be categorized into low, medium, and
high based on frequency magnitude. As shown in FIG. 1, an
inputimage I(k, k,) is provided at 102. It is also contemplated
that an input video may be provided as described further
below. A two-dimensional extended analytic signal I, (k,.k,)
of'the input image is computed at 104 by applying the Hilbert
transform to form a 2D extension of the 1D analytic signal.
For either an input image or input video, a multi-scale filter-
bank is selected at 106. A multi-scale filterbank is selected by
defining the bandpass filters at 108 that correspond to each
scale as described in further detail with respect to FIG. 2. The
extended analytic signal is processed through a multi-scale
filterbank as shown by 110, 112. Estimates for instantaneous
amplitude, instantaneous phase, and instantaneous frequency
are calculated at 114. The dominant AM-FM component is
selected at 116 using the maximum amplitude at every pixel.
Thus, the estimates with the maximum response are selected.
Instantaneous amplitude, instantaneous phase and instanta-
neous frequency estimates are obtained at 118. These esti-
mates are obtained by the QEA method described above.
Instantaneous amplitude and instantaneous frequency esti-
mates are used to reconstruct the image such that it can be
displayed on a display unit.

The processing for a discrete video is similar to that
described above. A discrete video 1(k, .k, .k;) is provided. A
Hilbert transform is applied to form a 3D extension 1,4k,
k,.k;) of the 1D analytic signal. A multi-scale filterbank is
selected by defining the bandpass filters that correspond to
each scale as described in further detail with respect to FIG. 3.
The extended analytic signal is processed through the multi-
scale filterbank and the instantaneous frequencies are esti-
mated in all x, y and t directions. For each pixel, the AM-FM
demodulation estimates are selected from the processing
block that gives the largest instantaneous amplitude estimate.
Hence, the algorithm adaptively selects the estimates from
the bandpass filter with the maximum response. This
approach does not assume spatial continuity, and allows the
model to quickly adapt to singularities in the input signal.
Instantaneous amplitude and instantaneous frequency esti-
mates are used to reconstruct the video such that it can be
displayed on a display unit.

Dominant component analysis is applied over each scale to
produce a single AM-FM component from each scale. Esti-
mates are adaptively selected from the bandpass filter with the
maximum response. This approach does not assume spatial
continuity and allows the model to quickly adapt to singulari-
ties in the image or video. Although any collection of filters
for each scale is contemplated, in one embodiment the corre-
sponding collection of filters for each scale is shown below by
Table 1:

TABLE 1

Bandpass filters corresponding to different image scales

Scale Single-scale Two-scale Three-scale
LPF 1 1 1
High 2,3,4,5,6,7 2,3,4,5,6,7 2,3,4,5,6,7
frequencies
Medium NA* 8,9,10,11,12,13 8,9,10,11,12,13
frequencies
Low NA* NA* 14,15, 16,17, 18,19

frequencies

10

15

20

25

30

35

40

45

50

55

60

65
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Multi-scale filterbanks covering the whole frequency spec-
trum are used for images as shown in FIG. 2. For real-valued
bandpass filters, each separable channel filter has support
over four quadrants. In order to maintain support over only
two quadrants, Fast Fourier Transform (“FFT”) pre-filtering
is used to remove support in two quadrants such as the two left
or tow right quadrants. Thus, each bandpass filter has fre-
quency support in only two quadrants of the frequency spec-
trum so that, in effect, each channel filter operates over a
single quadrant. The filters were designed using a min-max,
equiripple approach. In one embodiment, passband ripple is
set at0.017 dB and the stopband attenuation is set to 66.02 dB.

The design of an efficient filterbank to be used in 3D
methods and applications is shown in FIG. 3 and FIG. 4. FIG.
3 shows the extended 2D filterbank design to generate a 3D
multi-scale filterbank illustrating the numbering of bandpass
filters for the time variable for 3D single-scale, 3D two-scale,
and 3D three-scale filterbanks. The same equiripple design,
with the same specifications, is used. The third dimension,
time, will increase the total number of bandpass filters. The
bandpass filters always have frequency support in only half of
the spectrum. For the filters through time, the following nota-
tion is used: filter 1 is the low pass filter (“LPF”), filters 2 and
3 are high frequency filters, filters 4 and 5 are medium fre-
quency filters, and filters 6 and 7 are low frequency filters.

As an example, in embodiments where 2D applications
have designed filterbanks with 7, 13 and 19 bandpass filters
for a single-, two- and three-scale filterbank, respectively, the
3D filterbanks have 21, 65 and 133 3D bandpass filters,
respectively.

FIG. 4(a) illustrates frequency spectrum decomposition
for a 3D two-scale filterbank, but with the added frequencies
associated with the time variable. FIG. 4(b) shows the 3D
frequency-domain decomposition for a 3D two-scale filter-
bank.

For the transition bandwidth, it is required that it remains
lower than the passband bandwidth and also that it remains
sufficiently large so that the passband and stopband require-
ments can be met with a reasonable number of digital filtering
coefficients. Transition widths are relatively less important
for the high frequencies since they also come with filters of
larger passband bandwidths. In contrast, low-frequencies
require relatively larger transition widths since images con-
tain larger, low-frequency components and the transitions
occur over smaller bandwidths. Transition bandwidths are
fixed to /10. Based on this approach, the unit gain over the
passband eliminated the need for amplitude correction as
required by a Gabor filterbank approach.

In order to develop robust demodulation techniques, it
must be ensured that no intermediate computation step results
in the loss of significance, particularly avoiding excessive
relative error.

The relative error is defined in the approximation as given
by X=X pproxl/ X! Where the number x,, . is used as
an approximation of the true value x,,,,.. For one-dimensional
functions, the notion of relative error to relative perturbation
is generalized as (f(x+h)—f(x))/f(x), which measures the rela-
tive change in evaluating f at x, for relative change in x given
by h/x. A large relative perturbation for small relative change
in x implies instability. A well-known estimate of relative
perturbation is based on the condition number of the function
as summarized below.

Starting from the Taylor theorem with remainder f(x+h)=f
(X)+hf'(x)+R(x), where IR(X)I=max,p, .,z I"(D)Ih?/2, the
relative perturbation is given by:
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Ja+h-fx) ') [Xf’(X)]h

~ = 2 xxo.
7® ™ Tw et

The error in the relative error approximation is bounded by
Rx)/(x)=h?/ (2f(x))max ., .5/ T" (DI noting that the relative
perturbation in x (given by h/x) is amplified by the condition
number given by:

x-f'x)

(cond f)(x):= W .

More generally, in evaluating functions, the condition
numbers of all intermediate functions used in the computa-
tion need to be considered. The computation is unstable and
prone to error if any one intermediate function has a large
condition number. For robust methods, it is sought to develop
numerically stable algorithms that are characterized by the
smallest possible condition numbers.

In the development of AM-FM demodulation methods,
three inverse trigonometric functions are encountered: arcsin,
arcos, and arctan with their condition numbers given by

x|
|arccos(x)||\/ 1-x2 |’
x|

|arcsin(x)||\/ 1-x2 |’

x|
larctan(x)||1 + x2|

(cond arccos)(x) =
(cond arcsin)(x) =

(cond arctan)(x) =

Again, the approximation error of the relative error is
bounded above by h*/ (2f(x))max ., .5 T"(DI. Therefore the
error for the arccos is bounded above by

0
max
2arccos(x) re[x,x+h]

I
(1- [2)1.5

Similarly, for the arcsin and arctan, the errors are bounded
above by:

i
T max
2arcsin(x) re[x,x+h]

13
(1 _ [2)1.5

and

»2
max
2arctan(x) re[x,x+k]

r
1-2?

For the arccos, it is interesting to note that the approxima-
tion error remains low around x=0.

The condition numbers become infinite for both the arcsin
and the arccos for x==x1 as shown by FIG. 5. Otherwise, finite
condition numbers exist for all values ofx, including the cases
when arcsin (x)=0, arcos (x)=0, or arctan (x)=0.

As shown by FIG. 5, evaluating the arccos is more stable
for [x1<0.6 than evaluating the arcsin. More specifically, the
absolute value of the condition number for the arcos and the
absolute value of the condition number for the arcsin is
shown. Furthermore, the most stable evaluations occur for
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small values of x|, when using the arccos function. Absolute
value of the condition number of the arcos (solid line)

Even though the arccos function provides the most stable
evaluations, the arcsin function must also be used to estimate
the proper instantaneous frequency quadrant, although, there
are also significant problems in accurate estimation at very
high frequencies.

According to the present invention, a robust instantaneous
frequency estimation is termed herein as Variable Spacing,
Local Linear Phase (“VS-LLP”) described below.

Due to the unit gain over the passbands, a plug-in rule is
used to produce a new signal T,¢ with unit instantaneous
amplitude using:

Tastky, k2) _ alky, kaexp(iky. k2))
[Tasthy, k2)| alky, k2)

Iastky, kp) = = exp(j@lky, k).

A linear approximation is considered for the estimated

phase &)(plspz) oforder ”[El _klspz_k2]||2s givenby ¢(p,, p,)=¢
(& k) +pi ki, Po-ko V(K k) to get:

Lus(ky +n1, ko) + Lasthy —n1, k)
2 ps(ky, k2)

exp(jplhy +ny, ka)) + exp(j@lk; —ny, k2)) N
2exp(j@lks, k2))
exp(jplki, k2))lexp(jm V §) + exp(=jni V)]
2exp(j@ki, k2))

d¢
= COS(’H a(kla kz))

This gives an arc-cosine expression for estimating the
instantaneous frequency component using:

de 1
— (ky, kp) = —arccos
dx ny

Lastky +np, ky) + stk —ny, ky)
2 ps(ky, ka)

The analysis for 3¢/3y is similar.

For low instantaneous frequency magnitude, it is clear that
the local linear phase approximation will hold over a larger
range ofn, n,. Forlarger instantaneous frequency magnitude,
the phase must be modulated down to lower frequencies as
described below.

The arc-cosine function is evaluated at different possible
values for n, . For stable function evaluations, the argument to
the arc-cosine function is considered:

Tastki +ny, kp) + Tastky —ny, k)

Yarceos(1) = —
2 astky, k)

Integer values forn, so astohavevy,,....(1n,) as close to zero
as possible are considered (see FIG. 5). Four possible values:
n,=1, 2, 3 and 4 are considered—increasing the value of n,
could lead to an unstable zone. Additionally, only integer
values are considered since non-integer values require image
interpolation and possible additional errors due to the addi-
tional interpolation step.

To establish the limits of this approach, in order for the
argument of'y ... () to be zero, it is required that:

Listki=n Jo)==Lys(ky+n k).
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Thus, for n,=1, the maximum frequency that can be and (3) a combined approach. For the reconstructions, least
attained, without requiring interpolation, will be w =m/2. squares methods derived from the proposed multi-scale
However, this limitation is circumvented by modulating the decomposition that are computed using QEA estimates of the
input image to lower frequencies. On the other hand, for the phase and instantaneous amplitude are used.
maximum value of n,=4, the instantaneous frequency estima- 3 For images, Least-Squares Reconstructions (“LESHA™)
tion down to w,=mn/8 is considered. considered reconstructing an image using its AM-FM har-

—
\é—

improve the accuracy of the approach. FIG. 7 illustrates the

IFx_block where 10

h
Tkis ko) = d + 3 cpatks, kaeos(nglhs, k).

n=1

() = Tas(ky +ny, ko) +1asthy =y, ko) ) )
Yarceos\t1 ) = U nsthr, k2) where d denotes a constant direct current (“DC”) image. The
instantaneous amplitude a(k .k,) and the instantaneous phase

. . . . ¢(k,.k,) are estimated using dominant component analysis
as described above. Clearly, it is possible for the actual instan- over all scales (see FIG. 2).

taneous frequency to fall outside of the spectral support of any The AM-FM harmonic coefficients c.. n=1. 2. . . . . h are
given channel filter. Given the fact that the filterbank covers computed so that i(kl k) is a least-squares estimate of I(k,.

the entire spectrum, it can be expected that the instantaneous 2 _ : :

frequency will fall within the spectral support of one of the ﬁgzncger the space of the AM-FM harmonics. ¢, is computed
channel filters. It is assumed that local image coherency will

force the instantaneous frequency estimate to fall within the

passband of the dominant bandpass filter. Looking for the d

minimum arc-cosine argument that also falls within the pass- 25 .

band of the estimating bandpass filter, the following is com- :1 =ATA) (AT,

puted: '

M

: 30 . . .
o Warccos(t1)l where the columns of A contain the basis functions. Thus, the
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where s is the number of scales used, d is a global DC image
estimate, G(k,,k,) is the low-pass filter output, a, cos ¢, is the
high-frequency scale AM-FM component, a, cos ¢, is the
medium-frequency scale AM-FM component and a; cos ¢ is
the low-frequency scale AM-FM component. The AM-FM
multi-scale coefficients c,,, n=0, 1, . . ., s are computed so that
i(kl,kz) is a least-squares estimate of I(k,,k,).

Video is reconstructed using its AM-FM components by
extending the application presented for 2D signals to get 3D
versions of the three methods discussed above. The 3D multi-
scale filterbank is used to extend the 2D reconstruction to
reconstruct videos using 3D Least-Squares Reconstructions
using AM-FM harmonics (3D-LESHA), 3D multi-scale
least-squares reconstructions (3D-MULTILES) and 3D
Least-Squares Reconstructions using AM-FM harmonics and
the DCA (3D-LESCA). 3D-MULTILES will be discussed
since the application of 3D-LESCA and 3D-LESHA are simi-
lar to the 2D methods.

3D-MULTILES is based on the scales of the filterbanks
designed by defining d as the global DC image estimate,
G(k, k,.k;) as the low pass filter output, a, cos ¢, f as the
high-frequency scale AM-FM component, a, cos ¢, as the
medium frequency scale AM-FM component, and a, cos ¢5 as
the low-frequency scale AM-FM component. In this case,
least squares reconstructions is given by:

Ty, ko k3) ~ d + coGlhy, ko, ka) + Z Cnlnky, ky, k3)cos(p,(ky, ka, k3)),

n=1

where s is the number of scales used.

The AM-FM multi-scale coefficients ¢, n=0, 1, . . . , s are
computed, so that I(k,k,k,) is a least-squares estimate of
1(k,.k,.k5). An orthonormal basis is also computed over the
space of the AM-FM estimations scale by scale.

It is important to note that adding decomposition levels
also reduces the total amount of video signal energy that is
captured by the decomposition. For a single scale decompo-
sition, video signal energy is captured by the low-pass filter
component and the dominant high-frequency components,
selected from the high frequency 3D bandpass filters. Then, in
two-scale decompositions, the 3D spectrum captured by the
low-pass filter is further decomposed into two new scales.
The dominant components are found in this second scale
while the lowest frequency components are captured by the
new low-pass filters. Similarly, for three-scales, decompose
the frequency spectrum of the 3D low-pass filter is decom-
posed.

The extracted dominant components from each scale pro-
vide decompositions using an independent AM-FM compo-
nent per scale. Furthermore, the corresponding dominant
channel filters allow the extraction of local spatiotemporal
content over each pixel. This approach allows the re-formu-
lation of the classical motion estimation problem with several
independent equations over each scale. It is also important to
note that the AM-FM decomposition also track both continu-
ous and discontinuous motions since at every pixel three
different dominant channels from three different scales canbe
associated.

For the 3D-LESHA reconstruction method, reconstructing
the input video using AM-FM harmonics is considered:
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h
I, ko k3) = d o+ ) cnatk, ka, ks deostngl, Kz, ka)),

n=1

where d is a scalar and h is the maximum number of AM-FM
harmonics to use. For 3D-LESCA, G((k, k,,k;) (the LPF
output)is also used. Thus, least squares video reconstructions
is considered using:

h
Tk, k2, k3) = d + coGlhy, ko, k3) + Z cnalky, kz, ks)cos(np(ky, ka, k3)).

n=1

VS-LLP provides for significant improvement in instanta-
neous frequency estimation, while the least-squares AM-FM
decompositions can be used to reconstruct general images.

For both instantaneous amplitude and instantaneous fre-
quency estimations, significant improvements are realized
when using the multi-scale filterbanks. Instantaneous fre-
quency estimation does suffer when the instantaneous fre-
quency components are very low. This comes from the
requirement that the AM and FM magnitude spectra should
remain clearly separated.

For instantaneous frequency estimation, VS-LLP is con-
sistently shown to improve estimation over all other methods
for single-component signals, without the use of filterbanks.
Similarly, for the same signal, significant improvements are
obtained over regularized AM-FM demodulation. Dramatic
improvements in instantaneous frequency estimation are seen
when using VS-LLP with modulation to a lower frequency.
Here, modulating to alower frequency has the effect of “slow-
ing-down” the signal, allowing the consideration of instanta-
neous frequency estimation algorithms with spacings of 1 to
4 pixels. In turn, this “slow-down” helps the local linear phase
model become more applicable. The use of post and pre
filtering with a 3x3 median filter also helps reduce noise.
Again, the advantage of the median filter is that it removes
noise without reducing the bandwidth (for single AM-FM
components only).

It is also interesting to note the 70 dB improvement over
QEA, when the Quadrature signal was provided to both VS-
LLP and the QEA, which suggests that most of the error
comes from estimating the Quadrature signal. When the
Quadrature signal is provided, the VS-LLP is directly com-
pared to the standard QEA, without accounting for any pre-
processing.

To analyze the results for image reconstructions, it is
important to note the significant role played by the channel
filters in each scale. For example, for a single-scale, the spec-
tral support for the LPF is the largest. Similarly, for three-
scale reconstructions, the LPF support is the smallest. Thus,
in considering the quality of the reconstructions, given the
fact that most image energy is concentrated around the lower-
frequency components, the LPF provides a very significant
contribution. This also applies to LESHA reconstructions
since the low-frequency components estimated over the LPF
will dominate. For LESHA, the use of AM-FM harmonics did
not contribute much to the reconstruction. This result is attrib-
uted to the fact that low-frequency components, estimated
over the LPF, dominate the reconstruction.

For LESHA and MULTILES, AM-FM demodulation is not
allowed over the LPF. This allows the measurement of the
contribution of higher-frequency AM-FM components. It is
clear that the use of AM-FM components extracted from
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multiple scales provided for the most significant AM-FM
contributions towards the reconstruction.

The success of the VS-LLP algorithm comes from the fact
that it adaptively selects accurate instantaneous frequency
estimates at every pixel. Here, the basic idea is to look at
instantaneous frequency estimates coming from different
spacings between the samples, and then select the estimate
that also produces the lowest condition number estimate. It
has been verified experimentally that the instantaneous fre-
quency methods that produced lower condition number esti-
mates have also produced more accurate demodulation
results. Overall, this resulted from the fact that numerical
stability of the instantaneous frequency estimate was consid-
ered a function of frequency. It thus makes sense to consider
samples separated by larger distances for lower frequencies
as opposed to using smaller distances for higher frequencies.

The accuracy of the multi-scale QEA amplitude estimates
are attributed to the relatively flat spectral magnitude
response of the designed digital filters. The use of non-flat
magnitude response will clearly alter the AM-FM component
spectrum dramatically. Apparently, it is far more efficient to
use digital filters with flat responses, instead of attempting to
fix for the non-flat response afterwards.

The use of a robust least-squares approach for combining
AM-FM components is an important step that directly leads
to accurate reconstructions of general images. In other words,
the standard use of dominant component analysis does pro-
duce AM-FM components that are (generally) far from
orthogonal. Use of a least-squares approach relaxes the
assumption that the demodulated AM-FM components
should be orthogonal.

In sum, the first step in developing the AM-FM methods
according to the present invention is to design a new multi-
scale filterbank. This design allows correct instantaneous fre-
quency component sign estimation. The almost flat response
in the bandpass frequency of the 1D filters eliminates errors
due to the use of an amplitude correction as in the case of
using Gabor filterbanks. The use of these filters in the AM-
FM demodulation problem produces big improvements in the
instantaneous amplitude estimations and instantaneous fre-
quency estimations. For noisy signals, VS-LLP produced
better results for robust instantaneous frequency estimation
than previous methods such as QEA or QLM.

Images can be reconstructed based on their instantaneous
amplitude and instantaneous phase information. The least
squares methods MULTILES, LESHA and LESCA produced
good image reconstructions and MULTILES showed that
AM-FM components from different scales of the frequency
spectrum contain important information that can be used to
improve image quality in the reconstruction. Overall, the
present invention provides for accurate reconstructions of
general images and the extraction of AM-FM component
parameters. Clearly, all prior applications that were based on
AM-FM demodulation can benefit from using the new filter-
banks presented.

As for 2D, the first step was to design new 3D multi-scale
filterbanks with support in four octants of the frequency spec-
trum. Similar to the 2D case, the flat response in the bandpass
frequency of the 1D filters eliminate errors due to the use of an
amplitude correction as in the case of using Gabor filterbanks.
Basically, the 2D AM-FM formulation and theory is extended
to 3D.

Video reconstructions can be obtained using AM-FM from
multiple-scales in three different forms based on the 2D meth-
ods. These AM-FM methods can be used for motion estima-
tion, allowing the estimation of pixel motion with up to three
equations per pixel per scale (AM, FM, and continuity equa-
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tions). The new filterbanks cover the entire frequency spec-
trum providing dense motion estimates.

One application of the present invention will now be dis-
cussed with respect to retinal image analysis using AM-FM
methods. For retinal image analysis, a four-scale filterbank
was designed as shown by FIG. 8. In FIG. 8, filter 1 corre-
sponds to a low pass filter (“LPF”) with frequency support
[-7/16,/16] for both x and y directions. For all the other
filters, the bigger the label number of the filter, the lower the
frequency support that it has. The filters in the highest fre-
quencies, such as filters from 2 to 7, have a bandwidth of /2
for both x and y directions. The bandwidth is decreased by a
factor of 0.5 for each added scale. FIG. 8(a) illustrates a
complete frequency spectrum of the filterbank and FIG. 8(5)
illustrates the zoom on the low frequency bandpass filters.

AM-FM components are extracted from different scales.
Table 3 describes the correspondence between the scales and
bandpass filters according to one embodiment:

TABLE 3

Bandpass filters used for estimating AM-FM in a four-scale filterbank

Scales Bandpass filters
LPF Low pass filter 1
VL Very low frequencies 20,21,22,23,24,25
L Low frequencies 14,15,16,17,18, 19
M Medium frequencies 8,9,10,11,12,13

As shown by Table 4 below, nine different cases of extract-
ing dominant AM-FM component from different scales is
considered for retinal applications:

TABLE 4

Scales used for the nine cases in retinal image analysis

Case#  Scales used for AM-FM estimation AM-FM component

1 VL,L,M a; cos @

2 LPF a, cos ¢,

3 VL a3 cos @y

4 L a, cos @y

5 M a5 cos Ps

6 LPF,VL,L,M a5 COS Pg

7 LPF, VL a;cos ¢

8 VL, L ag cos Pg

9 LM ag COS g
From each case i, i=1, . . ., 9, histograms of both the

instantaneous amplitude a, and the magnitude of the instan-
taneous frequency (V¢,) given by |[V¢,|| as image features are
used. It should be noted that high-frequency bandpass filters
(filters from 2 to 7 of FIG. 8) are not used for the analysis
because the information contained therein is the high fre-
quency noise of the image.

The histograms of instantaneous amplitude and the mag-
nitude of the instantaneous frequency, |[IF||, are used to create
a feature vector for detection of diabetic retinopathy (“DR”).
Using histograms at different scales (see Table 4) the infor-
mation extracted with AM-FM can be analyzed to find differ-
ences among retinal images with DR and healthy images. A
region containing micro-aneurysms, hemorrhages, and exu-
dates will have different estimates for instantaneous ampli-
tude than a region lacking these features. Using these histo-
grams, it can be found if a certain frequency component that
encodes a feature is present in the image.

Both histograms, of a, and ||[V¢,||, for i=1, 2, . . . or 9, are
computed using forty bins, leading to one histogram of eighty
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bins. Histograms are computed for each image at all nine covariance of the columns of X with themselves, the PL.S
filterbank cases and analyzed separately. Thus, each image optimization explains the covariance of the columns of X
has nine histograms, one per filterbank case. with Y as parsimoniously as possible. PLS results in a T
A predictor of disease state can be developed based on the matrix of so called latent factors which are orthogonal, and

histogram bins counts generated. The dependent variable, 5 the first columns T, use as few columns as possible to explain
disease state, is coded with 0’s for normal and 1’s for the the variability of Y. PLS is used in the analysis of the data and

disease state. The normal images are separately compared predictions of diagnoses.
with disease Risks 1, 2 and 3. Thus, three cases are consid- When a model is fit to a data set using any of the methods
ered: 0 versus 1, O versus 2 and O versus 3. discussed above, the predictor is then applied to that data set
Each of the nine cases for estimating the AM-FM features 10 to assess the accuracy of the predictor. It is inevitable that
(see Table 4) has an 80-bin histogram. A joined histogram when the model is used to make predictions for a new data set
vector containing the histogram of the nine cases is created. not used in the construction of the model, the accuracy is not
Thus, 9 casesx80 bins each=720 bins used for each image. as good. The difference between the two predictions is
This number is reduced by first solving the detection problem referred to as the optimism of the model. Several methods are
for each filter case, then combining the nine detectors into 15 used to minimize the optimism, one such method being the
one. The regression model is given by: jackknife, or leave-one-out method.
Y=XPte, The concept of the jackknife is to serially remove each case
of the data, fit the model without that case, and then predict
where'Y is the vector of diagnoses such as 0’s and 1’s for the y value for that case using the model. What this is accom-
normal and diseased, X is the matrix of independent variables ,, plishing is to make predictions using models that were not
(bin counts of instantaneous amplitude and |[IF| histograms), constructed using the case being predicted. The algorithm is
B is the vector of weights and € is a vector of random errors. summarized as:
The Gauss-Markov theorem assures that the least-squares Fori=l ton
estimate of p given by the so called normal equations: X=X with the i row removed.
p-x XY 25 Y=Y with the i element removed.

Fit the model Y, and X,.
Predict the i value of Y using the i” row of X.
Accumulate the sum of the squared prediction errors.
end
30 Using this algorithm a less optimistic prediction error can
be constructed. This algorithm and other variants of it are
used to assess all results.
The dependent variable—disease state—is coded with 0’s
for normal and 1’s for the disease state. The normal images
35 are separately compared with disease Risks 1, 2 and 3. For
X=TL, each of the nine cases (see Table 4), histograms of the instan-
taneous amplitude and magnitude of the instantaneous fre-
quency, |[IF||, are generated for every image—a total of 720
histogram bins for each image. This number is reduced by
40 first solving the detection problem for each case, then com-
bining the nine detectors into one.
The first step was to develop a robust estimator for each

S R T I O T R |

is the Best Linear Unbiased Estimator (“BLUE”) of 8 and
hence the BLUE of Y as given by Y=Xp.

A number of methods referred to as shrinkage methods
exist that forgo the unbiased criterion that may exist and
decrease the variance more than the loss of accuracy due to
some added bias. One shrinkage method that is in common
use is Principal Components Regression (“PCR”). PCR is
based on Principal Components Analysis (“PCA”) which
factors the nxp matrix X into two parts:

where the matrix T is an orthogonal matrix of size nxp
containing the p principal components and L. is a pxp matrix
of'loading factors. The advantage of PCA is that the principal
components are ordered in their ability to reconstruct X. That
is X can be approximated parsimoniously by the first columns
of T and rows of L. This leads to a reduction of the regression

L S T
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TABLE 5-continued

Number of factors in normal versus risk (1, 2. 3) retinopathy

Risk 1 Risk 2 Risk 3
Case # Factors Case # Factors Case # Factors
4 18 4 4 4 4
5 5 5 2 5 9
6 2 6 4 6 8
7 16 7 4 7 9
8 2 8 7 8 10
9 9 9 3 9 4

For example, in the detection of Risk 1 in the data containing
Risk 1 as the only level of retinopathy and Risk 0 (normals),
cases 4 and 9 from Table 4 provided the best model for the
detection ofthe Risk 1 patients. These cases appear to indicate
that the spatial information, as encoded by the associated
scales, serve to differentiate the two classes of images, i.e.,
normal versus Risk 0. Similarly, one can select appropriate
combinations of scale from Table 4 for the detection of the
Risk 2 and Risk 3. Likewise, detecting certain lesion types,
such as Neovascularization/New Vessels of the Disc (“NVE/
NVD”), will be performed using specific scales. Based on this
factor-based analysis, the next step is to use the information to
produce a matrix of independent variables that is parsimoni-
ous, well conditioned and robust. To accomplish this, the data
for each case with 10 or fewer factors is used in a PLS model
using the optimal number of factors as shown in the tables
above. For the normal’s versus Risk 1 retinopathy, for
example, case 1 was fitted with a PLS model using 9 factors
producing a T matrix of t-scores, T,. The case 2, which
requires 16 factors, is not fitted since the number of factors is
greater than 10. Finally, case 9 is fitted using 9 factors pro-
ducing a t-score matrix T,. From this, a matrix of independent
variables is constructed as:

X=[T |\ T, T5\ T\ T Ty).

From a regression model, X is constructed from the T
matrices. This model was fitted using PLS with 2 factors and
jackknifed predictions of the diagnoses obtained. The result-
ing ROC curves and AUC’s estimated from these predictions
is discussed below.

Considering the application of AM-FM feature extraction
and PLS classification to the four categories of DR severity
(O=none; 1=few microaneurysms (“MAs”); and 2=MAs and
hemorrhages present, and 3=extensive MAs, hemorrhages,
possible macular edema (“MEs”) and neovascularization).
The sensitivity, specificity, and area under the ROC curve are
given for both the testing processes described above. First, the
ability to correctly detect those images is determined with
signs of DR in a set of images composed of Risk 0 (normal
N=92) and Risk 1 (N=71). A total of 163 images are selected
from the total available (N=265). AM-FM features are calcu-
lated for the nine cases (see Table 4). The PL.S-based classifier
is tested using all combinations to determine the best model
(as measured by AUC).

FIG. 9 illustrates Receiver Operating Characteristic for
detection of Risk 0 (normal) in a set of normals versus differ-
ent forms of diabetic retinopathy. More specifically, FIG. 9(a)
shows the ROC curve for detecting, classifying and compar-
ing Risk 0 versus Risk 1 images. As shown by FIG. 9q, a
sensitivity of 95% with a specificity is 85% is shown. Area
under the ROC is 0.984. This data set of 265 includes 4.5%
images of less than optimal quality, i.e., worse than image
quality grade 3. A sensitivity of 98% and specificity of 93%
can be achieved if 4-5% of the worse quality images are
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removed. FIG. 9(b) shows the ROC curve for detecting, clas-
sifying and comparing Risk 0 versus Risk 2 images. As shown
by FIG. 9(5), for a sensitivity of 90%, the specificity is 80%.
Area under the ROC is 0.95. FIG. 9(c) shows the ROC curve
for detecting, classifying and comparing Risk 0 versus Risk 3
images. FIG. 9(c) shows a sensitivity of 100%, and a speci-
ficity o 82%. Area under the ROC is 0.973. Finally, F1G. 9(d)
shows the ROC curve for detecting, classifying and compar-
ing Risk O versus all patients with any form of DR, which
shows a sensitivity of 100%, specificity of 82% and an area
under the ROC equal to 0.95.

Now the application of AM-FM/PLS processing to images
sets with vascular abnormalities and risk for macular edema
(DR level 3 and macular edema level 2) is considered. Also,
the effects of image quality are addressed. Table 6 shows the
distribution of image quality for 265 test images with higher
values indicating better image quality:

TABLE 6

Distribution of image quality by Risk level

Image Quality
Risk Total 1 2 3 4 5
0 92 2 3 5 43 39
1 71 0 1 4 37 29
2 50 0 3 9 23 15
3 52 0 3 6 36 7

Here, 36 images are combined from Risks 2 and 3 with risk of
macular edema and 11 images with vascular abnormalities
are separated from them resulting in 100% of these images
being correctly classified.

FIG. 10 illustrates an exemplary computer system 200, or
network architecture, that may be used to implement the
methods according to the present invention. One or more
computer systems 200 may carry out the methods presented
herein as computer code. One or more processors, such as
processor 204, which may be a special purpose or a general-
purpose digital signal processor, is connected to a communi-
cations infrastructure 206 such as a bus or network. Computer
system 200 may further include a display interface 202, also
connected to communications infrastructure 206, which for-
wards information such as graphics, text, and data, from the
communication infrastructure 206 or from a frame buffer (not
shown) to display unit 230. Computer system 200 also
includes a main memory 205, for example random access
memory (“RAM?”), read-only memory (“ROM”), mass stor-
age device, or any combination thereof. Computer system
200 may also include a secondary memory 210 such as a hard
disk drive 212, a removable storage drive 214, an interface
220, or any combination thereof. Computer system 200 may
also include a communications interface 224, for example, a
modem, a network interface (such as an Ethernet card), a
communications port, a PCMCIA slot and card, wired or
wireless systems, etc.

It is contemplated that the main memory 205, secondary
memory 210, communications interface 224, or a combina-
tion thereof function as a computer usable storage medium,
otherwise referred to as a computer readable storage medium,
to store and/or access computer software and/or instructions.

Removable storage drive 214 reads from and/or writes to a
removable storage unit 215. Removable storage drive 214 and
removable storage unit 215 may indicate, respectively, a
floppy disk drive, magnetic tape drive, optical disk drive, and
a floppy disk, magnetic tape, optical disk, to name a few.
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10. A computer system method for modeling video content
comprising the steps of:

providing an input video;

computing a three-dimensional extended analytic signal of

the input video;

selecting a multi-scale filterbank by defining one or more

bandpass filters that correspond to each scale of the
multi-scale filterbank;

processing the three-dimensional extended analytic signal

through the multi-scale filterbank;
calculating estimates for instantaneous amplitude, instan-
taneous phase, and instantaneous frequency, said calcu-
lating step further comprising the step of applying a
Variable Spacing [ocal Linear Phase Model;

selecting the instantaneous amplitude estimates with the
maximum amplitude response, the instantaneous phase
estimate with the maximum phase response, and the
instantaneous frequency estimate with the maximum
frequency response from said calculating step;

reconstructing the input video using the instantaneous
amplitude estimate and instantaneous frequency esti-
mate from said selecting step to obtain a reconstructed
video; and

displaying the reconstructed video on a display unit.

11. The computer system method for modeling video con-
tent of claim 10 wherein said applying step further comprises
the steps of:

Selecting the instantaneous frequency estimates with the

minimum value for a condition number;

pre-filtering the instantaneous frequency estimate with a

median filter;
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post-filtering the instantaneous frequency estimate with

the median filter; and

modulating high-frequency outputs to baseband, wherein

the Variable Spacing Local Linear Phase Model is
directly applicable.

12. The computer system method for modeling video con-
tent of claim 10 wherein the multi-scale filterbank includes
the one or more bandpass filters that have been optimally
designed using min-max criteria.

13. The computer system method for modeling video con-
tent of claim 10 wherein said reconstructing step further
includes the step of:

figuring the instantaneous amplitude estimate and the

instantaneous frequency estimate scale by for each scale
of the multi-scale filterbank to obtain computed esti-
mates.

14. The computer system method for modeling video con-
tent of claim 10 wherein the method is applied to images
identifying disease at different stages.

15. The computer system method for modeling video con-
tent of claim 10 wherein the method is applied to retinal
image analysis.

16. The computer system method for modeling video con-
tent of claim 15 wherein the retinal image analysis further
includes diabetic retinopathy classification.

17. The computer system method for modeling video con-
tent of claim 10 wherein the method is applied to processing
X-ray images.

18. The computer system method for modeling video con-
tent of claim 10 wherein the method is applied to describing
images featuring atherosclerotic plaque.

#* #* #* #* #*
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