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Abstract— The AM-FM Dominant and Channelized Com-
ponent Analysis (DCA and CCA respectively) [1], consist of
applying a filter bank to the Hilbert-tranformed image, and
then proceeding with the AM-FM demodulation of each band-
pass filtered image. Whereas AM-FM reconstructions based on
the CCA use a reasonably small number of locally coherent
components, those based on the DCA only use one component:
the estimates from the channel with the maximum amplitude
estimate. Both types of reconstructions are known to produce
noticeable visual artifacts.

We propose a method, based on a regularized optimization of
the estimates from the CCA, which attains a small number of
locally coherent components and simultaneously enforces a piece-
wise smooth constrain for the amplitude functions. Moreover,
this method offers high quality reconstructions when compared
to standard CCA and DCA reconstructions and state of the art
techniques [2].

I. INTRODUCTION

The AM-FM representation of images allows us to model

non-stationary image content in terms of amplitude and phase

functions using

b(ξ) =
L∑

n=1

an(ξ) cos(ϕn(ξ)) (1)

where b(ξ) : R
2 → R is the input image, ξ = (ξ1, ξ2) ∈ R

2,

M ∈ N, an : R
2 → [0,∞) and ϕn : R

2 → R. The

interpretation of (1) suggests that the L AM-FM component

images, an(ξ) · cos(ϕn(ξ)), model the essential image mod-

ulation structure, the amplitude functions an(ξ) embed the

contribution (intensity in this context) of an image’s region,

and the FM components cos(ϕn(ξ)) capture fast-changing

spatial variability in image intensity.

It is important to point out that (1) can also be interpreted

as a separation of texture (FM components cos(ϕn(ξ))) from

piecewise smooth content (amplitude functions an(ξ)) in an

image [3].

The AM-FM Dominant and Channelized Component Anal-

ysis (DCA and CCA respectively), described in [1], [4], consist

on applying a collection of band-pass filters (filter bank)

to the original image, and then proceed with the AM-FM

demodulation of each band-pass filtered image, which implies

the estimation of:

• the instantaneous amplitude (IA) functions an(ξ),

• the instantaneous phase (IP) functions ϕn(ξ), and

• the instantaneous frequency (IF) vector functions

ωn(ξ) = ∇ϕn(ξ).
Whereas the CCA’s goal is usually to obtain a reasonably

small number of locally coherent components (modeling the

input image as in (1)), the DCA goes on and selects the

estimates from the channel with the maximum amplitude

estimate using just one component (the dominant) to model

the input image.

In this work we hypothesise that the minimum of

J(a, ζ) =
1
p
‖f(a, ζ)−b‖p

p+λaT (a)+λζ‖ζ‖1, s.t. a ≥ 0 , |ζ| ≤ 1

(2)

attains a small number of locally coherent components and

simultaneously enforces a piecewise smooth constrain for

an(ξ). We employ the following notation:

• the 1D vectors an, ζn and b represent the 2D IA function

an(ξ), the

2D function cos(ϕn(ξ)) and the (grayscale) image b(ξ),
• a = [aT

1 , aT
2 , .. , aT

L]T , ζ = [ζT
1 , ζT

2 , .. , ζT
L ]T ,

• f(a, ζ) =
∑L

n=1 diag(an) ∗ ζn (see (1)),

• T (a) = 1
q

∥∥∥∥
√∑

n

(Dxan)2 + (Dyan)2
∥∥∥∥

q

q

is the TV regu-

larization ge-

neralization to vector-valued images with coupled chan-

nels [5], and

• Dx and Dy represent horizontal and vertical discrete

derivative op-

erators respectively.

II. REGULARIZED OPTIMIZATION FOR AM-FM

RECONSTRUCTIONS

The motivation for (2) is to enforce two constrains in the

AM-FM reconstruction: we want (i) a small number of locally

coherent components and (ii) a piecewise smooth constrain for

the amplitude functions an(ξ) in (1).

The functional J(a, ζ) (see (2)) is convex in a or in ζ, but it

is not necesarilly convex in both variables together. Somehow

similar problems have been previously described (for instance

see [3], [6]) for which numerical solutions aim to find a local

minima by alternating updates for each independant variable.
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Fig. 1. Regularized optimization for AM-FM reconstructions. In this figure, we depict the solution to the minimization problem described in (2), which we
hypothesise attains a small number of locally coherent components and simultaneously enforces a piecewise smooth constrain for the amplitude functions.
The resulting amplitude and (cosine of the) phase functions ân(ξ) and ζ̂n(ξ) maybe be used to reconstruct the input image via the CCA or DCA method.
See Figure 2 for experimental results.

In Algorithm 1 we summarized our optimization procedure,

where (3) may be solved using the ideas exposed in [7],

which is based on the non-negative quadratic programming

optimization algorithm [8] and on the FOCUSS algorithm [9],

and (4) may be solved via the vv-IRN-NQP algorithm [10],

which is based on [8] and on the iteratively reweighted norm

(IRN) algorithm for vector-valued images [11].

for k = 1, 2, ..

ζ(k) = min
|ζ|≤1

1
pζ
‖f(a(k−1), ζ) − b‖pζ

pζ + λζ‖ζ‖1 (3)

a(k) = min
a≥0

1
pa
‖f(a, ζ(k)) − b‖pa

pa
+ λaT (a) (4)

Algorithm 1: Proposed algorithm to solve (2). a(0) is the IA

estimation from CCA.

We must stress that the proposed procedure is strongly

dependant on the accuracy of the initial IA estimates. In this

work, for the initial IA estimates, we prefer the Quasi-Local

method [12] over the Quasi-Eigen Aproximation [1] method

(based on the analytic signal) because the IA estimates from

first method are less sensitive to perturbations (noise) than the

IA estimates of the latter [13].

III. PRELIMINARY EXPERIMENTAL RESULTS

The performance (image reconstruction quality) of our

proposed method was compared with that of several alter-

native approaches: CCA, DCA, and the methods proposed

in [2], [14]: LESHA, LESHAL and MULTILES. For the

CCA and DCA approaches, the IA was computed via Quasi-

Local (QLM) method [12] and the IP via the Quasi-Eigen

Aproximation (QEA) method [1], whereas for the LESHA,

LESHAL and MULTILES methods the IA and IP estimations

are based on the QEA method (see [2], [14] for details). For all

cases the image reconstruction quality of our proposed method

was superior than that of the other considered methods.

We use a separable filterbank covering the whole frequency

spectrum consisting of one low-pass and one high-pass filter.

We notice that each separable channel filter has support over

four quadrants. Here, to maintain support over only two

quadrants (needed for the QEA method), we used FFT pre-

filtering to remove support in two quadrants (as needed). The

filters were designed using an optimal min-max, equiripple

approach. Passband ripple was set at 0.017dB and the stopband

attenuation was set to 66.02dB.

The test images are the synthetic image “Radial Chirp” (see

Figure 2.(a)) and the “Lena” and “Barbara” images; all images

are 512 × 512 pixel. All simulations have been carried out

using Matlab-only code on a 1.83GHz Intel Dual core CPU

(L2: 2048K, RAM: 4G).

SNR (dB)
Image DCA CCA LESHA LESHAL MULTILES (2) + DCA

Radial
6.51 (14.43)∗ 3.21 (-2.63)∗ 0.51 13.56 13.56 15.41

Chirp
Barbara 0.92 (7.69)∗ 1.15 (9.76)∗ 10.48 12.69 12.69 22.39

Lena 0.83 (5.38)∗ 0.46 (6.58)∗ 14.97 15.16 15.16 24.40

TABLE I

RECONSTRUCTION PERFORMANCE COMPARISON BETWEEN THE DCA,

CCA, LESHA [2], LESHAL [2] AND MULTILES [2] AND THE

PROPOSED METHOD: (2)+DCA (OR DCA APPLIED TO â AND ζ̂, SEE

FIGURE 1) ON THE “RADIAL CHIRP”, “BARBARA” AND “LENA” TEST

IMAGES. VALUES MARKED WITH ()∗ INDICATES THAT THE

RECONSTRUCTED IMAGE HAS BEEN NORMALIZED.

SSIM index [15]
Image DCA CCA LESHA LESHAL MULTILES (2) + DCA

Radial
0.929 0.766 0.144 0.815 0.815 0.978

Chirp
Barbara 0.730 0.544 0.619 0.656 0.656 0.987

Lena 0.623 0.378 0.731 0.731 0.731 0.962

TABLE II

RECONSTRUCTION PERFORMANCE COMPARISON USING THE SSIM INDEX

[15] AS A METRIC FOR THE SAME SETUP OF TABLE I

In Tables I and II we use the SNR and SSIM index [15]

between the original image and the reconstructed image as

a measure of the image reconstruction quality, and present

the performance results between the afore mentioned methods
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(a) Input image “Radial Chirp” (b) Reconstructed via CCA. (c) Reconstructed via DCA. (d) Reconstructed via DCA applied

to â and ζ̂ (see Figure 1).

(e) Input image “Barbara” (f) Reconstructed via CCA. (g) Reconstructed via DCA. (h) Reconstructed via DCA applied

to â and ζ̂ (see Figure 1).

Fig. 2. Test images “Radial Chirp” and “Barbara”, and their AM-FM reconstruction versions

and compared it with that of our proposed method. For all

cases our method has superior performance, specially for the

“Barbara” and “Lena” images where our proposed method

attains very high SNR (≥ 22 dB) compared with the modest

SNR of all other methods (≤ 15.2 dB)

IV. CONCLUSIONS

The proposed method for AM-FM reconstructions offers

high quality reconstructions, both visually and quantitatively.

Moreover, the experimental results gives support to our hy-

pothesis: the minimum of (2) attains a small number of locally

coherent components and simultaneously enforces a piecewise

smooth constrain for an(ξ).
On-going work is focused on theoretical implications of (2).
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